25 Gb/s Ethernet Over a Single Lane for Server Interconnect Call For Interest Consensus

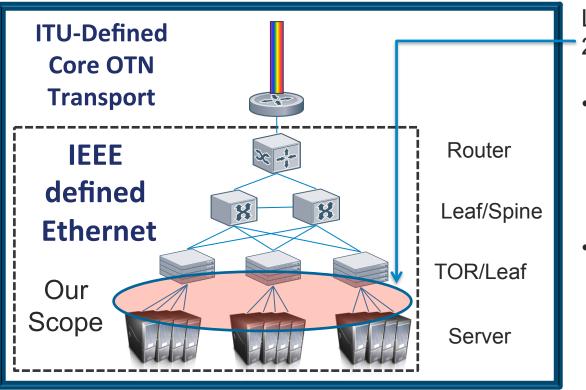
IEEE 802 July 2014 Plenary, San Diego, CA

Introductions for today's presentation

Presenter and Expert Panel:

Brad Booth - Microsoft Dave Chalupsky - Intel John D'Ambrosia – Dell Howard Frazier - Broadcom Joel Goergen - Cisco Mark Nowell - Cisco

Objectives


- To gauge the interest in starting a study group to investigate a "25 Gb/s Ethernet over a single lane for server interconnect" project
- We do not need to:
 - Fully explore the problem
 - Debate strengths and weaknesses of solutions
 - Choose a solution
 - Create a PAR or 5 Criteria
 - Create a standard
- Anyone in the room may vote or speak

Overview: 25Gb/s Ethernet Motivation

- Provide cost optimized server capability beyond 10G
- Provide a 25Gb/s MAC rate that:
 - Leverages single-lane 25Gb/s physical layer technology developed to support 100GbE
 - Maximize efficiency of server to access switch interconnect

Web-scale data centers and cloud based services are presented as leading applications

What Are We Talking About?

Leading Application Space for 25Gb/s Ethernet

- Optimized interconnect from servers to first-level networking equipment (i.e. ToR, access layer, leaf...)
- A single-lane 25Gb/s Ethernet interface provides the opportunity for optimum cost-performance server interconnect

Agenda

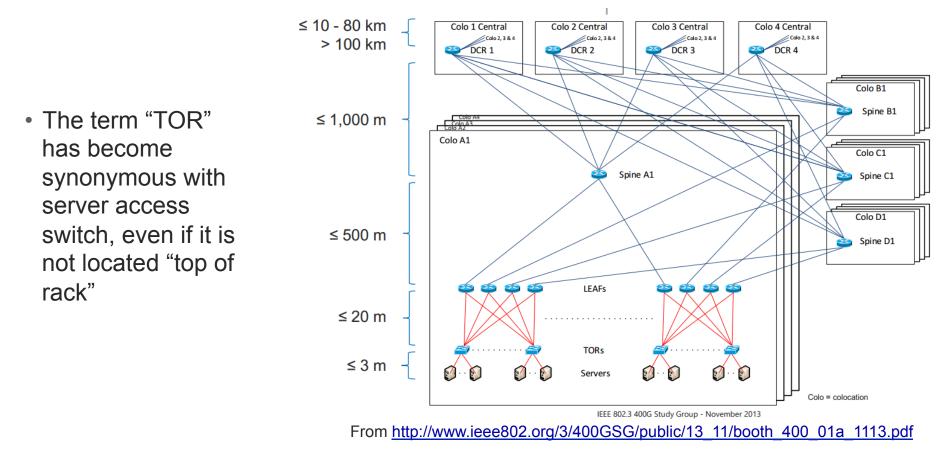
Overview Discussion

• 25 Gb/s Ethernet – Mark Nowell - Cisco

Presentations

- 25 Gb/s Ethernet Market Drivers David Chalupsky Intel
- 25 Gb/s Ethernet Technical Feasibility Howard Frazier Broadcom
- 25 Gb/s Ethernet: Why Now? John D'Ambrosia Dell

Straw Polls


7

Market Drivers

25 Gb/s Ethernet Market Drivers – David Chalupsky - Intel

Where are the Server Links in the Cloud Data Center?

IEEE 802.3 Call For Interest – 25Gb/s Ethernet over a single lane for server interconnect – July 2014 San Diego

Data Center Interconnect Volume by Type

Interconnection Volume

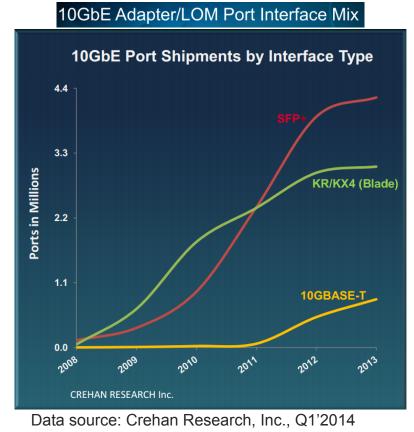
- Four sections per colo & multiple colos (≥ 4) per data center
- Volumes below are per section (except DCR to Metro)

A End	Z End	Volume	Reach (max)	Medium	Cost Sensitivity	Market Space
Server [‡]	TOR	10k – 100k	3 m	Copper	Extreme	
TOR	LEAF	1k – 10k	20 m	Fiber (AOC)	High	LAN
LEAF	SPINE	1k – 10k	400 m	SMF	High	
SPINE	DCR	100 - 1000	1,000 m	SMF	Medium	Campus
DCR	Metro	100 - 300	10 - 80 km	SMF	Low	WAN

‡ Server-TOR links may be served by breakout cables

IEEE 802.3 400G Study Group - November 2013

From http://www.ieee802.org/3/400GSG/public/13_11/booth_400_01a_1113.pdf


- Server interconnect drives the highest volume, has shortest reach need
- Cloud data center can have several 100k links

Single Lane interfaces in 10GbE Server

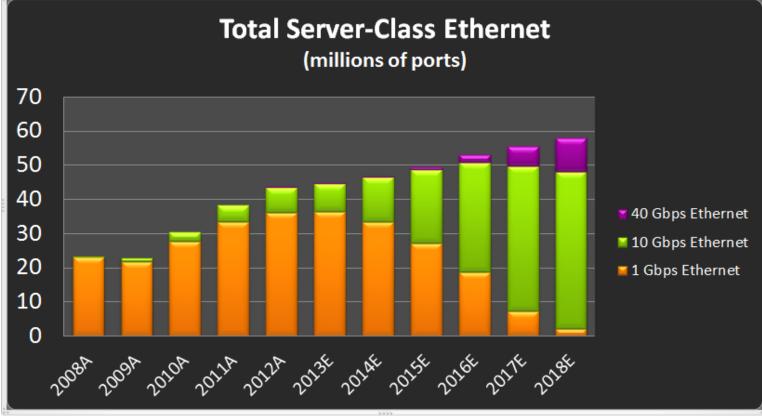
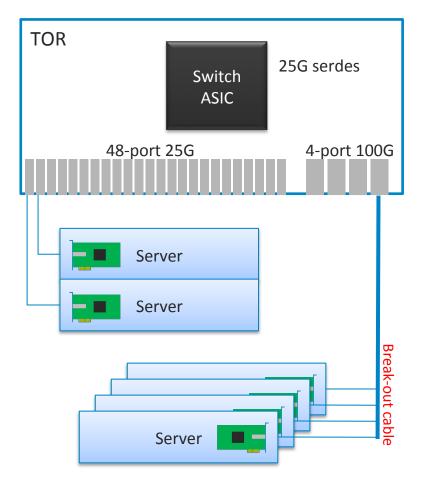

- 10GbE volume ramp in servers coincided with the availability of single-lane interfaces
- Early adopters (2004-2008) used
 - XAUI-based optics
 - 10GBASE-CX4 - 10GBASE-KX4
- Single-lane backplane and twinax solutions eclipsed the early-adopter volume starting in 2009

Chart notes

- "Other" category, not shown, went from ~12% in 2008 to <1% in 2013
- SFP+ majority use is twinax, then SR; accurate share data unavailable
- Blade server is mostly KR based upon system configuration. KX4 vs. KR split data unavailable.

Server Ethernet Port Speed Forecast


Data source: Crehan Research, Inc., Q1'2014

Server Ethernet Port Speed & Media Observations

- Market is wide & varied no single answer to the BW need question!
 - Port speeds from 1Gb/s to 100Gb/s will co-exist
 - · Variety of CPU architectures, clock speeds, core counts, CPUs/system
 - Mix of software applications with varied needs of I/O BW vs. CPU compute power
- Leading edge drives the higher speed as soon as available
 - Initial adoption: 10G ~2004; 40G ~2012; 100G ~2015
- ...but volume adoption is cost sensitive
- $1G \rightarrow 10G$ crossover forecast has repeatedly shifted right
 - 2012→2014→2016
 - In turn, transition to 40G slower than prior forecasts
 - Creates a window where new technology can provide the higher port speed at lower cost
 - Some portion of today's 10G KR & SFP+ users are likely to adopt 25Gb/s on the way to a higher speed

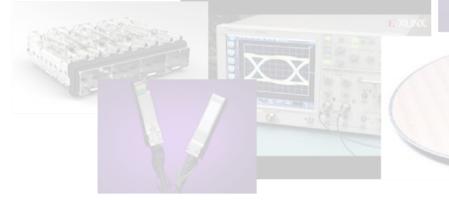
25Gb/s Ethernet Connectivity

- Enables similar topology as 40Gb/s & 10Gb/s
 - Single 25Gb/s SFP28 port implementation or Quad 25Gb/s QSFP28 breakout implementation possible
 - Maximizes ports and bandwidth in ToR switch faceplate
 - Dense rack server
 - Within rack, less than 3m typical length

25Gb/s I/O Efficiency

- Switch ASIC Connectivity limited by serdes I/O
- 25Gb/s lane maximizes bandwidth/pin and switch fabric capability vs. older generation
- Single Lane port maximizes server connectivity available in single ASIC
- 25Gb/s port optimizes both port count and total bandwidth for server interconnect

For a 128 lane switch:


Port Speed (Gbps)	Lane Speed	Lanes / port	Usable ports	Total BW (Gbps)
10	10	1	128	1280
25	25	1	128	3200
40	10	4	32	1280
40	20	2	64	2560
100	25	4	32	3200

Using 25Gb/s ports maximizes connectivity and bandwidth.

25 Gb/s Technology Feasibility

25 Gb/s Ethernet Technical Feasibility – Howard Frazier – Broadcom

15

Wealth of Prior Experience

Technology	Nomenclature	Description	Status	
Backplanes	100GBASE-KR4 100GBASE-KP4	4 x 25 Gb/s (NRZ) 4 x 25 Gb/s (PAM-4)	IEEE Std 802.3bj [™] -2014 Ratified	
Cu Twin-Axial	100GBASE-CR4	4 x 25 Gb/s		
Chip-to-Chip	CAUI-4	4 x 25 Gb/s	IEEE P802.3bm in Sponsor Ballot	
Chip-to-Module	CAUI-4	4 x 25 Gb/s		
Module Form Factor	SFP28	1 x 25 Gb/s	Summary Document SFF-8402	
	QSFP28	4 x 25 Gb/s	Style 1 - MDI for 100GBASE-CR4 Summary Document SFF-8665	
	CFP2	4 x 25 Gb/s		
	CFP4	4 x 25 Gb/s	Style 2 MDI for 100GBASE-CR4	

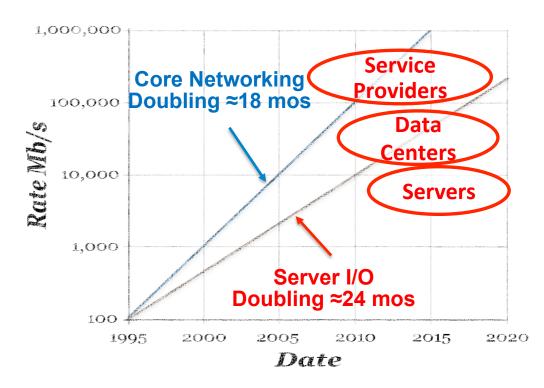
25Gb/s MAC/PCS Technical Feasibility

- The MAC is feasible in existing technology, and designs can leverage a 40GbE MAC and run it slower, or run a 10GbE MAC faster (with possibly a wider bus width)
- The PCS is feasible in existing technology, some possible PCS choices are:
 - Re-use the 10GbE PCS, 64B/66B, but run 2.5x faster (at possibly a wider bus width than a current 10GbE PCS). Can re-use the 10GBASE-KR FEC if desired and if it provides enough gain for possible PMDs
 - Re-use the 10GbE PCS and re-use the 802.3bj RS-FEC sublayer (both run at 25G), use transcoding to keep the same lane rate after adding the RS-FEC. Note the latency will be longer than it is for 100GbE.
- Possible data path widths in FPGAs: 64b @400MHz
 - Compact IP is possible, taking a small fraction of an FPGA
- Possible data path widths in ASICs: 32b @800MHz
 - Compact IP is possible
- Time-sliced MAC/PCS designs are feasible and can handle multi-rate implementations

25Gb/s Single Lane Technical Feasibility

- SERDES Technology widely available
 - Under discussion among SERDES vendors since ~2002
 - OIF Project in July 2005
 - Several OIF CEI-25 and CEI-28 flavors in 2010/2011 time frame
 - Defined in IEEE P802.3bj as a 25Gb/s 4 lane electrical interface
 - Shipping ASIC cores for ~3 to 4 years
 - Defined channel models for circuit boards, direct attach cables, and connectors
- Technology re-use
 - Single-lane of 100GbE 4-lane PMD and CAUI-4 specifications
 - SFP28 being developed for 32G FC

25Gb/s Technologies Readily Available



25 Gb/s Ethernet – Why now?

25 Gb/s Ethernet: Why Now? – John D'Ambrosia – Dell

Before.....

Graphic Source: IEEE P802.3ba Tutorial, Nov 07

Crystal Balls aren't always clear

- 100GbE took off in service provider networks
- 40GbE took off in data centers
- Servers slow transition to 10 GbE for some, but not for others

Consider Today's Cloud Scale Data Centers

	Top of Rack Box, Based on Single 128 I/O (3.2Tb) Silicon Switch Device					# TORs for a
Server I/O	Oversubscription	Servers	100G Uplinks	Throughput (Tb/s) per ToR Switch	Utilization (%)	100K Server Data Center
40GbE (4x10G)	2.8:1	28	4	1.52	47.5	3572
40GbE (2x20G)	2.4:1	48	8	2.72	85	2084
25GbE Single Lane	3:1	96	8	3.2	100	1042

- Total Cost of Ownership <u>Optimize cost per bit per second!</u>
 - CAPEX Top of Rack Switches, Interconnect Structure
 - OPEX Power / Cooling

Why Now?

- Web-scale data centers and cloud based services need
 - Servers with >10GbE capability
 - Cost sensitive for nearer-term deployment
- Industry has recognized the need & solution
 - Switching & PHY silicon under development
 - Formation of 25GbE Consortium targeting cloud-scale networks
- 25Gb/s technology standardized, developed, productized for 100GbE can be leveraged now!
 - There are no 40Gb/s single lane standardization efforts under way
- The Ethernet Ecosystem has been very successful
 - Open and common specifications
 - Ensured Interoperability
 - Security of development investment

Contributor Page

Hugh Barrass - Cisco Brad Booth - Microsoft Dave Chalupsky - Intel John D'Ambrosia - Dell Howard Frazier - Broadcom Joel Goergen - Cisco Mark Gustlin - Xilinx Greg McSorley - Amphenol Richard Mellitz - Intel Mark Nowell - Cisco Tom Palkert - Molex Megha Shanbhag - TE Scott Sommers - Molex Nathan Tracy - TE

Supporters (Page 1 of 2) (87 individuals from 48 companies)

John Abbott - Corning Venu Balasubramonian - Marvell Thananya Baldwin - Ixia Mike Bennet - 3MG Consulting Vipul Bhatt - Inphi Sudeep Bhoja - Inphi Brad Booth - Microsoft Bill Brennan - Credo Semicondictor Matt Brown - Applied Micro Dave Brown - Semtech Mark Bugg - Molex, Inc Carlos Calderon - Cortina-Systems Dave Chalupsky - Intel Chris Cole - Finisar Chris Collins - Applied Micro

John D'Ambrosia - Dell Mike Dudek - Qlogic **David Estes - Spirent Communications** Nathan Farrington - Packetcounter, Inc. Bob Felderman - Google Scott Feller - Cortina-Systems Howard Frazier - Broadcom Mike Furlong - ClariPhy Mike Gardner - Molex, Inc Ali Ghiasi - Ghiasi Quantum LLC Joel Goergen - Cisco Mark Gustlin - Xilinx Steffen Hagene - TE Dave Helster - TE Yasuo Hidaka - Fujitsu Labs of America, Inc.

Kiyo Hiramoto - Oclaro Japan, Inc Tom Issenhuth - Microsoft Peter Jones - Cisco Myles Kimmitt - Emulex Scott Kipp - Brocade Elizabeth Kochuparambil - Cisco Paul Kolesar - CommScope Subi Krishnamurthy - Dell Ryan Latchman - Macom Arthur Lee - MediaTek Inc. David Lewis - JDSU Mike Li - Altera Kent Lusted - Intel Jeffery Maki - Juniper Arthur Marris - Cadence

Supporters (Page 2 of 2)

Beck Mason - JDSU Erdem Matoglu - Amphenol Greg McSorley - Amphenol Richard Mellitz - Intel Paul Mooney - Spirent Andy Moorwood - Infinera Ed Nakamoto - Spirent Gary Nicholl - Cisco Takeshi Nishimura - Yamaichi Electronics Mark Nowell - Cisco David Ofelt - Juniper Tom Palkert - Luxtera Vasu Parthasarathy - Broadcom Neel Patel - ClariPhy Pravin Patel - IBM

Jerry Pepper - Ixia John Petrilla - Avago Technologies Scott Powell - ClariPhy Haoli Qian - Credo Semicondictor Adee Ran - Intel Ram Rao - Oclaro, Inc Michael Ressl - Hitachi Cable America Mike Rowlands - Molex, Inc Anshul Sadana - Arista Megha Shanbhag - TE Kapil Shrikhande - Dell Jeff Slavik - Avago Technologies Scott Sommers - Molex, Inc Steve Swanson - Corning Norm Swenson - ClariPhy Atsushi Takai - Oclaro Japan, Inc Michael Johas Teener - Broadcom Anthony Torza - Xilinx Nathan Tracy - TE Vincent Tseng - MediaTek Inc. David Warren - HP Brian Welch - Luxtera Oded Wertheim - Mellanox Chengbin Wu - ZTE George Zimmerman - CME Consulting Pavil Zivny – Tektronix Adam Healey – Avago Technologies

Straw Polls

27

Call-for-Interest Consensus

- Should a study group be formed for "25 Gigabit/s Ethernet over a single lane for server interconnects"?
- Y: 121 N: 1 A: 14
- Room count: 148

Participation

 I would participate in a "25 Gigabit/s Ethernet over a single lane for server interconnects" study group in IEEE 802.3

• Tally: 59

- My company would support participation in a "25 Gigabit/s Ethernet over a single lane for server interconnects" study group
 - Tally: 36

Future Work

- Ask 802.3 at Thursday's closing meeting to form a "25 Gigabit/s Ethernet over a single lane for server interconnects" study group
- Prepare ITU liaison letter for WG approval if Study Group formation is approved by WG.
- If approved:
 - 802 EC informed on Friday of formation of the study group
 - First study group meeting would be during Sept 2014 IEEE 802.3 interim meeting

Thank you!

From: Joel Goergen Mark Nowell Dave Chalupsky Brad Booth John D'Ambrosia Howard Frazier