10SPE Powering Discussion

Jean Picard, Texas Instruments
IEEE 802.3cg Task Force
January 2017

Power "profiles" and What is Expected from the Standard

There appears to be various types of implementations or "profiles". For example, here are some of them:

- 1. Process industry
 - Typically with up to 1km trunk cable, with 4-5 switches driving 10-30 field devices over ~200m cable each.
 - Preferrable to have data and power over single twisted pair.
 - Point-to-point interconnection for data communication.
 - Could be with daisy-chaining between field switches (this is NOT for multi-drop).
 - Some devices with intrinsic safety requirements.
- 2. Factory automation
 - a) On-machine and In-Cabinet: up to ~50m cable. Multipoint could be an option for data, currently using daisy-chain (linear configuration).
 - b) Plant-Wide (1km cable) Factory automation
 - In many cases, ok with a cable including 2 separate pairs (power vs data).
- 3. Building automation and control
 - Separate pairs for power and data

Power "profiles" and What is Expected from the Standard

- Since it's not realistic to have a unique specification, one approach could be to define a list of "profiles" or "Use Cases".
- Profile definition could include sub-categories like operating voltage, channel resistance range, sourced power, load power, etc.
- A compliant device or equipment would then need to meet the requirements defined for a specific profile.
- Once the profiles are defined, we need to define what should be the requirements to ensure interoperability. In other words, what are we expecting from the standard.
- Requirements could include for example inrush spec (sourcing equipment or field device TBD), Load di/dt, Current limit, etc.
- One question is also if we support power without data

Possible Power "use cases"

#	Profile	Sub-Profile	VPSE max	VP D min	P _{PD} max*	Max Loop R	Detect-class required	Daisy- chaining?	
1	Process Industry	Non-Intrinsically safe	57V	28. 5	100W	?			
		Increased safety (Ex e)	48V	24	60W	?			
		Intrinsically safe (Ex i)	17.5V	9	500mW	11 ohms			
2	Factory Automation	On machine							
		In cabinet							
		Plant wide							
3	Building Automation and Control								
4	Automotive								

^{*} P_{PD} max is the maximum (functional) power we need to supply to a PD.