

PIERGIORGIO BERUTO GIAN MARCO BO

IEEE802.3cg TF PSD mask and updated EMC simulations January 22nd, 2018

Channel Characteristics

• Channel defined as in

http://www.ieee802.org/3/cg/public/Sept2017/DiBiaso Bergner 01c 0917.pdf slide #18

Return Loss (f)	> 14 dB	for f $(0.3MHz \rightarrow 10MHz)$
	> 14 - 10*logi0(f/l0) dB	IOT I (IUMHZ -> 40MHZ)
Insertion Loss (f)	<pre>< 1.0 + 1.6*(f-1)/9 dB < 2.6 + 2.3*(f-10)/23 dB < 4.9 + 2.3*(f-33)/33 dB</pre>	for f (0.3MHz -> 10MHz) for f (10MHz -> 33MHz) for f (33MHz -> 40MHz)

Mode Conversion Loss (f) > 30 dB for f (0.3MHz -> 20MHz) > 30-20*log10(f/20) dB for f (20MHz -> 200MHz)

Proposal for PSD mask

$$Upper PSD(f) = \begin{cases} -61 & dBm/Hz & 300 \text{ kHz} < f < 15 \text{ MHz} \\ -40 - 1.4 * f & dBm/Hz & 15 \text{ MHz} < f < 25 \text{ MHz} \\ -75 & dBm/Hz & f > 25 \text{ MHz} \end{cases}$$

$$Lower PSD(f) = \begin{cases} -95 + 2 * f & dBm/Hz & 5 MHz < f < 10 MHz \\ -55 - 2 * f & dBm/Hz & 10 MHz < f < 15 MHz \end{cases}$$

Proposal for PSD mask

- Red: typ 1Vpp TX amplitude
- Green: +30% TX amplitude
- Blue: -30% TX amplitude

Simulations: EMI tests

 Direct Power Injection (DPI) and 150 Ohm emission tests for noise immunity and emission may be used to establish a baseline for PHY EMC performance

Parameter coupling	R1 [Ω] (MDI P)	R2 [Ω] (MDI N)
Symmetry	120	120
+ 2.5 % unbalance	121	118
- 2.5 % unbalance	118	121
+ 5.0 % unbalance	121	115
- 5.0 % unbalance	115	121

EMI Requirements

EMI Simulation $\pm 5\%$ unbalance, TX = 1 Vpp

EMI Simulation $\pm 5\%$ unbalance, TX = 1.3 Vpp

EMI Simulation $\pm 2.5\%$ unbalance, TX = 1.3 Vpp

Simulations: Multidrop mixing segment Test Bench

Simulations: mixing segment RL, IL

Mixing segment with 50mVpp Alien Noise

Mixing segment with 50mVpp Alien Noise + DPI (30dbm) and MC = 30dB (total = 680mVpp)

Mixing segment with 50mVpp Alien Noise + DPI (30dbm) and MC = 36.5dB (total = 350mVpp)

Mixing segment with 50mVpp Alien Noise + DPI (30dbm) and MC = 40dB (total = 250mVpp)

Mixing segment with 50mVpp Alien Noise + DPI (30dbm) and MC = 43dB (total = 190mVpp)

Mixing segment with 2Vpp TX + 100mVpp Alien Noise + DPI (30dbm) and MC = 30dB

- 30dB MC seems unreasonable
 - Increasing TX amplitude by 2x is not a solution
 - EMI likely out of specs anyway
- 36.5dB MC seems better but yields poor margin
- 40dB MC seems feasible
- 43dB (as in 802.3bw) looks safe
- Proposed change for T1S link segment / mixing segment definition