Multidrop Ethernet for In-cabinet Applications

David D. Brandt Rockwell Automation

Purpose

- The purpose of this presentation is:
 - To present the potential use case of multidrop Ethernet for In-cabinet Applications within Industrial Automation
 - This does not exclude point-point usage for critical applications
 - To <u>discuss</u> technology and concerns relevant to multidrop (not a proposal)

Relevant types of In-cabinet components

- Circuit protection
 - Disconnects
 - Breakers
- Motor control and protection
 - Contactors
 - Overload relays
 - Soft starters
 - Drives
- Operator interface
 - Pilot devices
 - Pushbuttons, selector switches, indicators...
 - Signaling devices
 - Tower or stack lights,

Largest volume

Market estimate

- Derived from: IHS Technology, "Low Voltage Contactors & Overload Protection Devices – World – 2014", February 2014
- 426M
 - 2019 extrapolation + 10% other components
- Assume 15% penetration
 - -64M

Typical panel assembly

- Components are snapped into place in rows on DIN rails
- Component wiring is placed in channels
 - Load connections
 - Device power
 - Communication or wired logic

Wiring practice - discrete

Discrete wiring is the most common practice

Wiring practice - networking

- High-end components have already adopted Ethernet
- For the bulk of the devices, dual-port Ethernet exceeds the cost of the discrete wired device

Enclosures

Typical enclosures

- https://www.pentairprot ect.com/wcsstore/Auror aStorefrontAssetStore/ UserDownloads/Downl oads/Bro-00218.pdf
- Large
 - Height = 2.2 m
 - Width = 1.8 m
 - Depth = 1 m

Topologies

Various bus attachment methods

Estimates for linear bus topology

- A single bus covers back panel and doors
- Length
 - 6 rows @ 1.8 m
 - 2.2 m height
 - 2 m to doors + 1.8 m backtracking
 - 6 rows @ 1.8 m on door
 - Total > 27.6 m
- Nodes
 - 20 across * 5 rows
 - Total > 100 nodes

Node count – termination load

- Point-point Ethernet terminates with 50 ohms on each end
 - 1 Vp leads to 20 mA
- 8 nodes (one automotive request) leads to 160 mA
- 100 nodes leads to 2 A

 This amount of drive current becomes excessive

Node count - legacy solutions

- The most common way RS485, CAN, and other buses support multiple nodes is by:
 - Making the termination external
 - High impedance transceivers
 - 3-state transmitters

Unit Loads	Nodes	Value	
1	32	12k ohm	
1/2	64	24k ohm	
1/4	128	48k ohm	
1/8	256	96k ohm	

Length – reflections (1)

- Rules of thumb
 - Lumped element: Ignore reflections if rise and fall times are less than the Round Trip Time (RTT)
 - Arrange termination to absorb reflections within RTT, sample after RTT

https://commons.wikimedia.org/wiki/File:High_accuracy_settling_time_measurements_figure_1.png

Length – reflections (2)

- Assume 0.66Vp or 5ns/m
- 10 M => 100 ns/bit
 - Stable sample point at 80% of symbol

Length	RTT	Symbol period	Bits/symbol	Sample point
8 m	80 ns	100 ns	1	80-100 ns
15 m	150 ns	200 ns	2	180-200 ns
25 m	250 ns	300 ns	3	280-300 ns
30 m	300 ns	400 ns	4	380-400 ns

 Best solution is to pick a topology that minimizes reflections and then to tolerate them

Line interface - typical

- Differential driver and receiver
- Impedance of 60 Ω to match midline connection of 120 Ω in each direction

- Referenced to a local power supply
- Normally DC coupled to line
- Limited common mode range

Line interface - power

Line interface - polarity

- Possibility of polarity insensitivity
 - Communication depends on signaling method
 - Limits access methods
 - Power requires diode bridge
 - Adds loss

Collision management (1)

- CSMA/CD
 - Random backoff issue
 - Legacy question
- EPON-derivative
 - Complexity
 - Requires new parts
- TSN
- Something new?

Collision management (2)

- CAN-like method?
- Non-destructive bit-wise arbitration
 - Random access
 - No collisions, no loss, no random backoff
- Priority resolution Rate switch (PAM-3, 3B2T for example) "Dominant bit" "Recessive bit" **Transmit** Node A Node B Yield Result Arbitration Data exchange

Collision management (3)

- CAN-like method?
- Arbitration ID
 - Priority bits sent first
 - MAC ID is a tie breaker in case of matching priority (avoids collisions)

Collision management (4)

Timing for 2 nodes at far ends of channel

Collision management (5)

- CAN-like method?
- Issues:
 - Polarity is fixed
 - Requirement?
 - Adds access delay
 - 64 bits => 6.4 us

TSN compatibility

- A bus (like wireless) is a shared medium
 - IEEE 802.11v provides an example of accurate time synchronization
- Each node has the ability to queue packet delivery and support
 - 802.1Qbv Scheduled Traffic
 - 802.1Qbu Frame Preemption

Conclusions

- In-cabinet industrial automation applications could benefit from a multidrop Ethernet option
- Technical solution could draw from and extend existing techniques
 - Challenges exist especially reflections