ANALOG &8 @.A il} W))))P))18

AHEAD OF WHAT’S POSSIBLE™

IEEE Draft P802.3cg/D3.0

10BASE-T1L
LPIl synchronization

1 MAY 2019

LPlI QUIET REFRESH synchronization

= 10BASE-T1L LPI includes no mechanism to provide a PHY with clear timing information about
when LPI QUIET and REFRESH modes will be entered and exited.

= This has potential to cause difficulty for L0BASE-T1L EEE PHY implementations. LPI modes will be
entered and exited depending on data traffic.

= Other PHY technologies that employ of MASTER/SLAVE timing scheme and echo cancellation
employ some kind of synchronization such that PHY implementations enjoy more certainty about
when LPI modes are entered and exited.
= 1000BASE-T symmetric LPI
= 1000BASE-T1 asymmetric LPI, with LPI synchronization (subclause 97.3.5.1)

ANALOG
DEVICES

Overview of proposal

~ Modify 10BASE-T1L PHY Control state diagram to add LPI synchronization mechanism using
loc_Ipi_req signal in advance of SEND IDLE OR DATA (link up).

= LPI synchronization mechanism dictates when a new LPI QUIET REFRESH timing state machine
starts.

= Start of LPI QUIET REFRESH timing is communicated to link partner using loc_Ipi_req signal, i.e.
observed in link partner as rem_Ipi_req

~ LPI QUIET REFRESH timing state machine would remain active for the lifetime of the link.
~ LPI QUIET REFRESH timing would synchronize to the symbol timer (TX_TCLK).

~ A PHY implementation could take advantage of LPI synchronization:

= To know when the link partner PHY is in the REFRESH state, and can restrict channel equalizer coefficient
adaptation to only be active during this window.

= To know when local PHY is in the REFRESH state, and can restrict echo canceller coefficient adaptation to
only be active during this window.

ANALOG
DEVICES

pma_reset = ON +
link_control = DISABLE

ot Figure 146-14 — PHY Control state

© diagram (part a)
vV

SLAVE SILENT

B o FALSE = Added entry to LPI synchronization sequence on
e stk — exit from SEND IDLE state for LPI mode (labelled

\

¢ y ® .
TRAINING SILENT S 18] d|ag ran |)

start mintraining_timer start silent_timer

start maxtraining_timer stop maxtraining_timer

tx_mode = SEND_| tx_mode = SEND_Z

= New output from PHY Control state diagram:

loc_revr_status = OK
maxtraining_timer_done +

loc_lpi_timer_sync_en

(!slave_clock_locked) *

+ v (config = SLAVE)]

= TRUE enables local LPI synchronization timing

start minwait_timer
start maxwait_timer

= FALSE disables local LPI synchronization timing

stop mintraining_timer
t_mode < SEND_|

et tar one = Not encoded in transmit symbol stream; no new

(rem_revr_status = OK)* | | e e e e nnan,

(o1l = OK) communicated parameters required

minwait_timer_done *
(loc_revr_status = OK) *
(rem_rcvr_status = OK) *
(scr_status = OK)

v

SEND IDLE OR DATA

stop maxwait_timer
start minwait_timer Ipi_enabled *
tx_mode = SEND_N : 1tx_enable_mii *

loc_lpi_req <= FALSE (loc_revr_status = OK) *

] H (rem_rcvr_status = OK) *
minwait_timer_done * i t_Ipi_active
(!tx_enable_mii) *

[(loc_revr_status = NOT_OK) +
(rem_rcvr_status = NOT_QK) +
(scr_status = NOT_OK) *

[(NIpi_enabled) +
(Irx_Ipi_active)]]

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

i

LPI SYNC START

PHY Control LPI synchronization

loc_Ipi_req < FALSE
loc_Ipi_sync_timer_en < FALSE

= LPI synchronization sequence is described as follows:
= MASTER first sets loc_Ipi_req = TRUE
= SLAVE waits to see rem_Ipi_req = TRUE (from MASTER), and then

maxwait_timer_done

(rem_lIpi_req = TRUE)

(config = MASTER) + i

LPISYNC SET sets loc_Ipi_req = TRUE
loc_lpi_req « TRUE = MASTER waits to see rem_Ipi_req = TRUE (from SLAVE), and then
[(config = MASTER) * maxwait_timer_done SetS |OC_|pi_req - FALSE
A A > = MASTER also sets loc_Ipi_sync_timer_en = TRUE at the same time
(rem_ipl_req = FALSE)] = SLAVE waits to see rem_Ipi_req = FALSE (from MASTER), and then
sets loc_Ipi_req = FALSE
LPISYNCCLR = SLAVE also sets loc_Ipi_sync_timer_en = TRUE at the same time

loc_lpi_req < FALSE
loc_Ipi_sync_timer_en < TRUE

(rem_npi_req=FALsai maxwait_timer_done = In both MASTER and SLAVE, transition of loc_Ipi_req from TRUE

> to FALSE occurs at the same time as start of local LPI
synchronization timing (loc_Ipi_sync_timer_en transition from
LPI SYNC DONE FALSE to TRUE).

e = LPI synchronization mechanism takes place before link startup
completion (PHY Control transition to SEND IDLE OR DATA).

minwait_timer_done * maxwait_timer_done
(loc_rcvr_status = OK) *

(rem_rcvr_status = OK) *
ANALOG

(scr_status = OK) @
DEVICES

S) AHEAD OF WHAT'S POSSIBLE™

Y

LPI synchronization timing diagram

MASTER

PHY Control SEND IDLE >< LPI SYNC SET >< LPI SYNC CLR >< LPI SYNC DONE

loc_lpi_req / \
rem_lpi_req / \

loc_Ipi_sync_timer_en /

loc_lpi_sync_timer_en /

rem_lpi_req / \
loc_lpi_req / \

PHY Control SEND IDLE >< LPI SYNC START >< LPI SYNC SET >< LPI SYNC DONE

SLAVE

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

LPlI QUIET REFRESH timing state diagram

loc_Ipi_sync_timer_en = FALSE ¢ = Timing offset between MASTER and SLAVE REFRESH is
effected in LPI TIMER INIT state:
LPITIVER DISABLE = Define Ipi_init_timer duration differently between MASTER and
loc_lpi_state < IDLE SLAVE
loc_lpi_sync_timer_en = TRUE ¢ = MASTER Ipi_init_timer duration O ps
= SLAVE Ipi_init_timer duration 3000 us
LPI TIMER INIT ; ; . . ; . .
= This offset, i.e. 3000 us, should be maintained for lifetime of link
start Ipi_init_timer

pInt_tmer_done i ¢ ~ Maintain Ipi_refresh_timer and Ipi_quiet_timer:
= |pi_refresh_timer 250 us
= |pi_quiet_timer 6000 ys

LPI TIMER REFRESH

start Ipi_refresh_timer
loc_Ipi_state <« REFRESH

Ipi_refresh_timer_done . . .
~ All timers here would be synchronized to symbol period

LPI TIMER QUIET (TX_TCLK). Might be defined in terms of symbol periods.
start Ipi_quiet_timer = As SLAVE maintains timing lock with MASTER, so timing
loc_lpi_state < QUIET relationship between MASTER and SLAVE LPI QUIET
Ipi_quiet_timer_done REFRESH cycling should also remain fixed (and predictable)
ANALOG

DEVICES

7 AHEAD OF WHAT'S POSSIBLE™

LPI QUIET REFRESH cycling

MASTER

loc_Ipi_state QUIET R QUIET R QUIET
SLAVE '
QUIET) R ('i)U[ET) R) QUIET

loc_Ipi_state
» > - >

\ Ipi__init_timer (SLAVE) = 3000 ps j

- Time offset between MASTER and SLAVE LPI QUIET REFRESH cycling remains fixed for lifetime
of link

= 3000 ps, as per Ipi_init_timer duration

ANALOG
DEVICES

PHY Control LPI sequencing

(f? ~ LPlI QUIET/REFRESH is set by loc_Ipi_state variable, an
output of the LPI QUIET REFRESH timing state diagram
SEND SLEEP
s secp e ponteas ~ Propose to reduce Ipi_sleep_timer duration
I i (fer_rcvr_statts = NOT_OK) + = Currently this is set to 205 ps + 5 ys
pi_sleep_timer_done ('tx_Ipi_active)
i = The reason for the relatively long duration here is to allow any
LPI QUIET REFRESH ongoing adaptation tasks to complete before transmission
ifé(loc_l;éi_stagaE:NSUZIET) ceases in QU'ET State.
e ode « SEND. = But, given that link partner LPI QUIET REFRESH cycling can
(penabled) s | o be known with certainty, a PHY should align to this, and should
(fem_tour_status = NOT_OK) + never require a longer duration in SEND SLEEP.
= Propose Ipi_sleep timer duration of 20 ys, same as
SEND WAKE

minwait_timer duration.
start Ipi_wake_timer
O e ReERESH = Might be specified in terms of transmit symbol periods.

Ipi_wake_timer_done

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

L Pl and frame transmission

loc_Ipi_state QUIET ’ R QUIET ’ R | QUIET
T MII LPI IDLE | DATA | LPI
PHY Control LPI QUIET REFRESH e | SEND IDLE OR DATA S LPI QUIET REFRESH
tx_mode SEND_Z SEND_I| SEND Z SEND | SEND_N | SEND_Z
- LPIQUIETREFRESH
cycling is independentof 7
data trafic 7
- In this example, LPI loc_Ipi_state QUIET R QUIET

REFRESH coincides with
end of frame

= Acts to delay cessation of
transmission on the line,
tx_mode = SEND_Z, until
end of REFRESH

10

——
Tx MlI DATA IDLE LPI

PHY Control SEND IDLE OR DATA B
SLEEP
: —

tx_mode SEND_N

LPI QUIET REFRESH

SEND _| SEND_Z

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

Thank you

ANALOG
DEVICES

11 AHEAD OF WHAT'S POSSIBLE™

