ANALOG "ESA A VTN va, 00004001
DEVICES ! SLEN:. B

AHEAD OF WHAT'S POSSIBLE™ RITIT B | oy 12%\.
|

IEEE Draft P802.3cg/D3.0
10BASE-T1L
LPIl synchronization

Proposal relating to comment 1-285

MICK MCCARTHY
22 MAY 2019

LPlI QUIET REFRESH synchronization

= 10BASE-T1L LPI includes no mechanism to provide a PHY with clear timing information about
when LPI QUIET and REFRESH modes will be entered and exited.

= This has potential to cause difficulty for L0BASE-T1L EEE PHY implementations. LPI modes will be
entered and exited depending on data traffic.

= Other PHY technologies that employ of MASTER/SLAVE timing scheme and echo cancellation
employ some kind of synchronization such that PHY implementations enjoy more certainty about
when LPI modes are entered and exited.
= 1000BASE-T symmetric LPI
= 1000BASE-T1 asymmetric LPI, with LPI synchronization (subclause 97.3.5.1)

ANALOG
DEVICES

Overview of proposal

~ Modify 10BASE-T1L PHY Control state diagram to add LPI synchronization mechanism using
loc_Ipi_req signal in advance of SEND IDLE OR DATA (link up).

= LPI synchronization mechanism dictates when a new LPI QUIET REFRESH timing state machine
starts.

= Start of LPI QUIET REFRESH timing is communicated to link partner using loc_Ipi_req signal, i.e.
observed in link partner as rem_Ipi_req

~ LPI QUIET REFRESH timing state machine would remain active for the lifetime of the link.
~ LPI QUIET REFRESH timing would synchronize to the symbol timer (TX_TCLK).

~ A PHY implementation could take advantage of LPI synchronization:

= To know when the link partner PHY is in the REFRESH state, and can restrict channel equalizer coefficient
adaptation to only be active during this window.

= To know when local PHY is in the REFRESH state, and can restrict echo canceller coefficient adaptation to
only be active during this window.

ANALOG
DEVICES

link_control = DISABLE

DISABLE TRANSMITTER Figure 146-14 — PHY Control state

tx_mode <= SEND_Z

l | ® diagram (part a)
f

pma_reset = ON + *

SLAVE SILENT

=~ Added entry to LPI synchronization sequence on

loc_lpi_timer_sync_en = FALSE

exit from SEND IDLE state for LPI mode (labelled

slave_clock_locked +

(config = MASTER) l + ‘S’ |n dlag ram)

TRAINING SILENT

st g e st mer - New output from PHY Control state diagram:

tx_mode = SEND_| t_mode = SEND_Z . .
%Isoc:t:'{;{azt:tuosg E}K) * silent_timer_done | O C_I p I_tl m e r_Syn C_e n
(rem_rcvr_status = OK) ma_xtrain!ngft!merﬁdone :
[miwinig_timer_done = TRUE enables local LPI synchronization timing
+ (config = SLAVE)]

= FALSE disables local LPI synchronization timing

start minwait_timer

o P er = Not encoded in transmit symbol stream; no new

Imaxwait_timer_done * | maxwait_timer_done CO m m u n ICa-ted p aram ete rS req U I red

llpi_enabled *
minwait_timer_done *
(loc_rcvr_status = OK) *
(rem_rcvr_status = OK) *

Imaxwait_timer_done *

(sor.statts = 01 Iraiiﬁivllxziittilteilﬁdn;ridnne * - -
éﬁ';ﬂﬁ:ﬁ::f;%;ﬁ;%ﬂ; = Note some minor corrections
(scr_status = OK) L.
= Use of Imaxwait_timer_done in exit transitions from

vy @ SEND IDLE

SEND IDLE OR DATA

o v e = Renaming loc_lpi_req as loc_lIpi (see later

tx_mode = SEND_N ; Itx_enable_mii *

loc_Ipi = FALSE (loc_rcvr_status = OK) * pl t-)
] : (rem_rcvr_status = OK) * eX an a I O n
minwait_timer_done * tx_Ipi_active :

('tx_enable_mii) *

[(loc_rcvr_status = NOT_OK) + ANALOG

tatus = NOT_OK| H :
E;?c:iértg‘:ﬂészaNucsfooK)f a ; g DEVICES

[(pi_enabled) + AHEAD OF WHAT'S POSSIBLE™
('rx_lpi_active) 1]

@ PHY Control LPI synchronization

LPI SYNC START
joc_Ipi = FALSE ~ LPI synchronization sequence is described as follows:
Bt ieisal kit [= MASTER first sets loc_Ipi = TRUE
(rem.pi ~ TRUE) l i = SLAVE waits to see rem_Ipi = TRUE (from MASTER), and then sets
loc_Ipi = TRUE
LPI SYNC SET = MASTER waits to see rem_Ipi = TRUE (from SLAVE), and then sets
loc_lpi = TRUE |OC_|pi = FALSE
[(Configlj .:_M_I{ARSJEER)* maxwait_timer_done = MASTER also sets |OC_|pi_SynC_timer_en = TRUE at the same time
(contig = SLAVE] > = SLAVE waits to see rem_Ipi = FALSE (from MASTER), and then sets
(rem_Ipt = FALSE)] loc_Ipi = FALSE
= SLAVE also sets loc_Ipi_sync_timer_en = TRUE at the same time
LPI SYNC CLR

loc_Ipi = FALSE

el synefimeren = TRUF - In both MASTER and SLAVE, transition of loc_Ipi from TRUE to

(empI=FALSE) renaldmerdere | FALSE occurs at the same time as start of local LPI
synchronization timing (loc_Ipi_sync_timer_en transition from
LPI SYNC DONE FALSE to TRUE).
el i » - LPI synchronization mechanism takes place before link startup
oo, TovT. oiatds = OK) * maxwait_timer_done - completion (PHY Control transition to SEND IDLE OR DATA).
o manm ooy f@
ANALOG

DEVICES

S) AHEAD OF WHAT'S POSSIBLE™

LPI synchronization timing diagram

MASTER

PHY Control SEND IDLE >< LPI SYNC SET >< LPI SYNC CLR >< LPI SYNC DONE

loc_Ipi / L
rem_lpi / \

loc_Ipi_sync_timer_en /

loc_Ipi_sync_timer_en /

rem_Ipi / \
loc_lIpi / \

PHY Control SEND IDLE >< LPI SYNC START >< LPI SYNC SET >< LPI SYNC DONE

SLAVE

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

LPlI QUIET REFRESH timing state diagram

loc_Ipi_sync_timer_en = FALSE ¢ = Timing offset between MASTER and SLAVE REFRESH is
effected in LPI TIMER INIT state:
LPITIVER DISABLE = Define Ipi_init_timer duration differently between MASTER and
loc_lpi_state < IDLE SLAVE
loc_lpi_sync_timer_en = TRUE ¢ = MASTER Ipi_init_timer duration 0 ps
= SLAVE Ipi_init_timer duration 3000 us
LPI TIMER INIT ; ;
= This offset, i.e. 3000 us, should be maintained for lifetime of link
start Ipi_init_timer

pInt_tmer_done i ¢ ~ Maintain Ipi_refresh_timer and Ipi_quiet_timer:
= |pi_refresh_timer 250 us
= |pi_quiet_timer 6000 ys

LPI TIMER REFRESH

start Ipi_refresh_timer
loc_Ipi_state <« REFRESH

Ipi_refresh_timer_done . . .
~ All timers here would be synchronized to symbol period

LPI TIMER QUIET (TX_TCLK). Might be defined in terms of symbol periods.
start Ipi_quiet_timer = As SLAVE maintains timing lock with MASTER, so timing
loc_lpi_state < QUIET relationship between MASTER and SLAVE LPI QUIET
Ipi_quiet_timer_done REFRESH cycling should also remain fixed (and predictable)
ANALOG

DEVICES

7 AHEAD OF WHAT'S POSSIBLE™

LPI QUIET REFRESH cycling

MASTER

loc_Ipi_state QUIET R QUIET R QUIET
SLAVE '
QUIET) R ('i)U[ET) R) QUIET

loc_Ipi_state
» > - >

\ Ipi__init_timer (SLAVE) = 3000 ps j

- Time offset between MASTER and SLAVE LPI QUIET REFRESH cycling remains fixed for lifetime
of link

= 3000 ps, as per Ipi_init_timer duration

ANALOG
DEVICES

- PHY Control LPI sequencing is simplified

PHY Control LPI sequencing « Combined LPI QUIET REFRESH state, with
QUIET/REFRESH mode determined by
loc_lpi_state variable

SEND SLEEP

stop minwait_timer

staﬁ Ipi_sleep_timer (llpi_enabled) + SEND SLEEP

tx_mode < SEND_| (loc_revr_status = NOT_OK) +

loc_Ipi_req < TRUE (rem_rcvr_status = NOT_OK) + start Ipi_sleep_timer .

[‘ (tx_Ipi_active) tx_mode = SEND_| (Ypi_enabled) +
_ _ loc_Ipi = TRUE (loc_rcvr_status = NOT_OK) +
¢ Ipi_sleep_timer_done x — (rem_rcvr_status = NOT_OK) +
(B) Ipi_sleep_timer_done (‘tx_Ipi_active)
QUIET
start Ipi_quiet_timer
tx_mode < SEND_Z
LPI QUIET REFRESH G

Ipi_quiet_timer_done (llpi_enabled) + if (loc_lIpi_state = QUIET)

(loc_revr_status = NOT_OK) + tx_mode « SEND 7
(rem_rcvr_status = NOT_OK) + else -

Itx_Ipi_acti
(lx_Ipi_active) tx_mode < SEND_|

SEND REFRESH
tart Ipi refresh ti (!Ipi_enabled) +
?ximc?cliérecr?ssENEIJTFr (loc_rcvr_status = NOT_OK) +
loc_lpi_req <= TRUE SEND WAKE (rem_rcvr_status = NOT_OK) +
('tx_Ipi_active)

stop Ipi_quiet_timer
stop Ipi_refresh_timer

Ipi_refresh_timer_done start Ipi_wake_fimer
tx_mode < §EN D_|
(llpi_enabled) ¥ loc_lpi_req < FALSE_ SEND WAKE
(loc_revr_status = NOT_OK) + Ipi_wake_timer_done . .
(rem_rcvr_status = NOT_OK) + - - - start Ipi_wake_timer
(tx_Ipi_active) tx_mode = SEND_|
(B) loc_lIpi = FALSE
. . Ipi_wake_timer_done
Figure 146-15—PHY Control state diagram (part b) ANALOG

DEVICES

9 G AHEAD OF WHAT'S POSSIBLE™

PHY Control LPI sequencing — Ipi_sleep_timer duration

@ ~ Propose to reduce Ipi_sleep_timer duration
SEND SLEEP / = Currently this is set to 250 us (as per Graber 3cg 0la 0419)

start Ipi_sleep_timer _ = The reason for the relatively long duration here is to allow an
(Ypi_enabled)
de = SEND_| -1 +
lo5 Ip| < TRUE. ~ (loc_reur_status = NOT_OK) + ongoing adaptation tasks to complete before transmission
(rem_rcvr_status = NOT_OK) + .
Ipi_sleep_timer_done (tx_lpi_active) ceases In QUIET state.
= But, given that link partner LPI QUIET REFRESH cycling can
LPI QUIET REFRESH B be known with certainty, a PHY should align to this, and should
i (oc_lpi_state = QUIET) never require a longer duration in SEND SLEEP.
tx_mode = SEND_Z7
® S mode = SEND. * Propose Ipi_sleep timer duration of 20 ys, same as
(Ipi_enabled) + minwait timer duration.
(loc_rcvr_status = NOT_OK) +] - o]])
o o iy > T NOTOH0 = Might be specified in terms of transmit symbol periods.
SEND WAKE

start Ipi_wake_timer
tx_mode < SEND |
loc_lpi = FALSE

Ipi_wake_timer_done &
G ANALOG

DEVICES

AHEAD OF WHAT'S POSSIBLE™

10

http://www.ieee802.org/3/cg/public/adhoc/Graber_3cg_01a_0419.pdf

L Pl and frame transmission

loc_Ipi_state QUIET ’ R QUIET ’ R | QUIET
T MII LPI IDLE | DATA | LPI
PHY Control LPI QUIET REFRESH e | SEND IDLE OR DATA S LPI QUIET REFRESH
tx_mode SEND_Z SEND_I| SEND Z SEND | SEND_N | SEND_Z
- LPIQUIETREFRESH
cycling is independentof 7
data traffic 7
- In this example, LPI loc_Ipi_state QUIET R QUIET

REFRESH coincides with
end of frame

= Acts to delay cessation of
transmission on the line,
tx_mode = SEND_Z, until
end of REFRESH

11

——
Tx MlI DATA IDLE LPI

PHY Control SEND IDLE OR DATA B
SLEEP
: —

tx_mode SEND_N

LPI QUIET REFRESH

SEND _| SEND_Z

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

Potential energy savings

= The reduced duration of the Ipi_sleep_timer provides for improved energy savings, as the QUIET
state should be reached sooner than in the current dratft.
= A persistent data traffic pattern which provides a short period of LPI assertion between sending frames can

even prevent entry to LPI QUIET altogether, if the period of LPI assertion is less than the Ipi_sleep timer.
The only mitigation is to keep Ipi_sleep_timer to a minimum.

~ Knowledge of local and remote LPI refresh timing allows PHY implementation easier way of
planning for filter coefficient updates

ANALOG
DEVICES

12 AHEAD OF WHAT'S POSSIBLE™

Thank you

ANALOG
DEVICES

13 AHEAD OF WHAT'S POSSIBLE™

Note on LPI signal naming

= loc_Ipi_reqg and rem_Ipi_req naming used in D3.0.

— These names have been lifted from 1000BASE-T (Clause 40), and are not used in other PHY
standards.

~ The naming is appropriate for the symmetric LPI scheme of 1000BASE-T, where the PHYs must
both simultaneously signal a request for LPI mode in order for the LPI mode to be entered.

= Where this is signalled from one PHY only it is only a request for LPI mode.

= In the context of 10BASE-T1L asymmetric LPI these names are inappropriate. For 10BASE-TL1L,
loc_Ipi_req does not represent a request, and is rather a signal that the PHY transmit has entered
the LPI mode of operation.

- Therefore, the following naming is proposed:
= |loc_lpi_req — loc_Ipi
= rem_Ipi_req — rem_|Ipi

ANALOG

DEVICES
14 e AD OF WHAT'S POSSIBLE™

