
802.3cg
On the PCS Receive in clause 147

Gergely Huszak, George Zimmerman, Piergiorgio Beruto
(v3)



RXn indexing and delay line
d3.0 comment i-319
See “Figure 147–8—PCS Receive state diagram (part b)”



Baseline: PCS RX must include a 4-symbol long delay line 
Background: To allow starting actual frame reception upon receiving a valid JJHH, a 
delay line is there, therefore PCS RX is always 3 symbols behind the channel
Details: The delay line is referred to as RXn-x and it is fed1 before RSCD, thus when 
exiting DATA2 DECODE() is not executed anymore (which is run last upon last 
DATA→DATA)

1 PMA_UNITDATA.indication(rx_sym): RXn-2→RXn-3, RXn-1→RXn-2, RXn→RXn-1, rx_sym→RXn
2 E.g. when RXn-4=data, RXn-3=ESD, RXn-2=ESDOK, RXn-1=SILENCE and RXn=SILENCE



Problem: Incorrect sequence number brought over from clause 961

Result: The last symbol of the frame remains undecoded (upon DATA→GOOD_ESD)
Solution:
1. Correct PCS RX in clause 147 → being done now
2. submit maintenance request to correct clause 96 → done by George Zimmerman
Current text: Proposed text (correction highlighted):

1 See for example state DATA in “Figure 96–10—PCS Receive state diagram”



Mutual exclusivity of the 2 
forward exit conditions of DATA
d3.0 comment i-278
See “Figure 147–8—PCS Receive state diagram (part b)”



Problem: The condition on DATA→BAD_ESD and that on DATA→GOOD_ESD may 
both evaluate to TRUE at the same time
Result: PHY behavior becomes implementation-dependent (see interoperability)
Example: RXn-3=ESDOK/ESDBRS, RXn-2=ESDOK/ESDBRS1, RXn-1=SILENCE, RXn=SILENCE

Current text:
• DATA→BAD_ESD:

RSCD *
(((RXn-2=ESD +
RXn-2=ESDBRS) *
RXn-1≠ESDOK) + 
RXn-3=SILENCE)

• DATA→DATA:
RSCD *
!(((RXn-2=ESD +
RXn-2=ESDBRS) *
RXn-1≠ESDOK) + 
RXn-3=SILENCE) *
!((RXn-3=ESD +
RXn-3=ESDBRS) *
RXn-2=ESDOK)

Proposed text (additions highlighted):

1 The 5B symbol of ESDOK and ESDBRS is the same (R)

• DATA→BAD_ESD:
RSCD *
(((RXn-2=ESD +
RXn-2=ESDBRS) *
RXn-1≠ESDOK * 
RXn-3≠ESD *
RXn-3≠ESDBRS) + 
RXn-3=SILENCE)

• DATA→DATA:
RSCD *
!(((RXn-2=ESD +
RXn-2=ESDBRS) *
RXn-1≠ESDOK * 
RXn-3≠ESD *
RXn-3≠ESDBRS) + 
RXn-3=SILENCE) *
!((RXn-3=ESD +
RXn-3=ESDBRS) *
RXn-2=ESDOK)



Descrabmler locking
d3.0 comment i-281
See “Figure 147–7—PCS Receive state diagram (part a)”



Baseline: Self-synchronous descrambler needs initial 17 bits (≈5 symbols) to lock
Problem: If implemented as specified by figures 147–7 and 147–8, descrambler will 
start locking in DATA state, this way making first data 17 bits undecodable
Solution: Start feeding descrambler immediately after receiving valid “JJHH” in PRE1

Current text: Proposed text (additions highlighted):

1 The index x of the delay line RXn-x is 3 (x=3), as per the explanation at pages 2-4 (on comment i-319)


	802.3cg�On the PCS Receive in clause 147
	RXn indexing and delay line
	Baseline: PCS RX must include a 4-symbol long delay line �Background: To allow starting actual frame reception upon receiving a valid JJHH, a delay line is there, therefore PCS RX is always 3 symbols behind the channel�Details: The delay line is referred to as RXn-x and it is fed1 before RSCD, thus when exiting DATA2 DECODE() is not executed anymore (which is run last upon last DATA→DATA)
	Slide Number 4
	Mutual exclusivity of the 2 forward exit conditions of DATA
	Problem: The condition on DATA→BAD_ESD and that on DATA→GOOD_ESD may both evaluate to TRUE at the same time�Result: PHY behavior becomes implementation-dependent (see interoperability)�Example: RXn-3=ESDOK/ESDBRS, RXn-2=ESDOK/ESDBRS1, RXn-1=SILENCE, RXn=SILENCE
	Descrabmler locking
	Baseline: Self-synchronous descrambler needs initial 17 bits (≈5 symbols) to lock�Problem: If implemented as specified by figures 147–7 and 147–8, descrambler will start locking in DATA state, this way making first data 17 bits undecodable�Solution: Start feeding descrambler immediately after receiving valid “JJHH” in PRE1

