ANALOG g TRFAVE, IS VNANNA/
DEVICES (AR o erofOccupants: 3-4 11—

AHEAD OF WHAT’S POSSIBLE™ : 12%

IEEE Draft P802.3cg/D3.0
10BASE-T1L
LPIl synchronization

Proposal relating to comment 1-285

MICK MCCARTHY, ANALOG DEVICES
24 MAY 2019

LPlI QUIET REFRESH synchronization

= 10BASE-T1L LPI includes no mechanism to provide a PHY with clear timing information about
when LPI QUIET and REFRESH modes will be entered and exited.

= This has potential to cause difficulty for L0BASE-T1L EEE PHY implementations. LPI modes will be
entered and exited depending on data traffic.

= Other PHY technologies that employ of MASTER/SLAVE timing scheme and echo cancellation
employ some kind of synchronization such that PHY implementations enjoy more certainty about
when LPI modes are entered and exited.
= 1000BASE-T symmetric LPI
= 1000BASE-T1 asymmetric LPI, with LPI synchronization (subclause 97.3.5.1)

ANALOG
DEVICES

Overview of proposal

~ Modify 10BASE-T1L PHY Control state diagram to add LPI synchronization mechanism using
loc_Ipi_req signal in advance of SEND IDLE OR DATA (link up).

= LPI synchronization mechanism dictates when a new LPI QUIET REFRESH timing state machine
starts.

= Start of LPI QUIET REFRESH timing is communicated to link partner using loc_Ipi_req signal, i.e.
observed in link partner as rem_Ipi_req

~ LPI QUIET REFRESH timing state machine would remain active for the lifetime of the link.
~ LPI QUIET REFRESH timing would synchronize to the symbol timer (TX_TCLK).

~ A PHY implementation could take advantage of LPI synchronization:

= To know when the link partner PHY is in the REFRESH state, and can restrict channel equalizer coefficient
adaptation to only be active during this window.

= To know when local PHY is in the REFRESH state, and can restrict echo canceller coefficient adaptation to
only be active during this window.

ANALOG
DEVICES

link_control = DISABLE

DISABLE TRANSMITTER Figure 146-14 — PHY Control state

tx_mode <= SEND_Z

l | ® diagram (part a)
f

pma_reset = ON + *

SLAVE SILENT

=~ Added entry to LPI synchronization sequence on

loc_lpi_timer_sync_en = FALSE

exit from SEND IDLE state for LPI mode (labelled

slave_clock_locked +

(config = MASTER) l + ‘S’ |n dlag ram)

TRAINING SILENT

st g e st mer - New output from PHY Control state diagram:

tx_mode = SEND_| t_mode = SEND_Z . .
%Isoc:t:'{;{azt:tuosg E}K) * silent_timer_done | O C_I p I_tl m e r_Syn C_e n
(rem_rcvr_status = OK) ma_xtrain!ngft!merﬁdone :
g ier_done = TRUE enables local LPI synchronization timing
+ (config = SLAVE)]

= FALSE disables local LPI synchronization timing

start minwait_timer

o P er = Not encoded in transmit symbol stream; no new

Imaxwait_timer_done * | maxwait_timer_done CO m m u n ICa-ted p aram ete rS req U I red

llpi_enabled *
minwait_timer_done *
(loc_rcvr_status = OK) *
(rem_rcvr_status = OK) *

Imaxwait_timer_done *

(sor.statts = 01 Iraiiﬁivllxziittilteilﬁdn;ridnne * - -
éﬁ';ﬂﬁ:ﬁ::f;%;ﬁ;%ﬂ; = Note some minor corrections
(scr_status = OK) L.
= Use of Imaxwait_timer_done in exit transitions from

vy @ SEND IDLE

SEND IDLE OR DATA

slop maxwll_timer = Renaming loc_Ipi_req as loc_Ipi (see later

tx_mode = SEND_N ; Itx_enable_mii *

loc_Ipi = FALSE (loc_rcvr_status = OK) * pl t-)
] : (rem_rcvr_status = OK) * eX an a I O n
minwait_timer_done * tx_Ipi_active :

('tx_enable_mii) *

[(loc_rcvr_status = NOT_OK) + ANALOG

tatus = NOT_OK| H :
E;?c:iértg‘:ﬂészaNucsfooK)f a ; g DEVICES

[(pi_enabled) + AHEAD OF WHAT'S POSSIBLE™
('rx_lpi_active) 1]

@ PHY Control LPI synchronization

LPI SYNC START
oc_Ipi = FALSE = LPI synchronization sequence is described as follows:
Bt ieisal kit [= MASTER first sets loc_Ipi = TRUE
(e = TRUE) l I = SLAVE waits to see rem_Ipi = TRUE (from MASTER), and then sets
loc_Ipi = TRUE
LPI SYNC SET = MASTER waits to see rem_Ipi = TRUE (from SLAVE), and then sets
loc_lpi = TRUE |OC_|pi = FALSE
[(Configlj .:_M_I{ARSJEER)Jr* maxwait_timer_done = MASTER also sets |OC_|pi_SynC_timer_en = TRUE at the same time
(contig = SLAVE] > = SLAVE waits to see rem_Ipi = FALSE (from MASTER), and then sets
(rem_Jpi = FALSE) loc_Ipi = FALSE
= SLAVE also sets loc_Ipi_sync_timer_en = TRUE at the same time
LPI SYNC CLR

loc_Ipi = FALSE

o Ipleyne_timeren = TRUE ~ In both MASTER and SLAVE, transition of loc_Ipi from TRUE to

(empI=FALSE) renaldmerdere | FALSE occurs at the same time as start of local LPI
synchronization timing (loc_Ipi_sync_timer_en transition from
LPI SYNC DONE FALSE to TRUE).
o [stertminwal fmer N - LPI synchronization mechanism takes place before link startup
oo, TovT. oiatds = OK) * maxwait_timer_done - completion (PHY Control transition to SEND IDLE OR DATA).

(rem_rcvr_status = OK) *
ANALOG

(scr_status = OK) @
DEVICES

S) AHEAD OF WHAT'S POSSIBLE™

LPI synchronization timing diagram

MASTER

PHY Control SEND IDLE >< LPI SYNC SET >< LPI SYNC CLR >< LPI SYNC DONE

loc_Ipi / L
rem_lpi / \

loc_Ipi_sync_timer_en /

loc_Ipi_sync_timer_en /

rem_Ipi / \
loc_lIpi / \

PHY Control SEND IDLE >< LPI SYNC START >< LPI SYNC SET >< LPI SYNC DONE

SLAVE

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

LPlI QUIET REFRESH timing state diagram

loc_Ipi_sync_timer_en = FALSE ¢ = Timing offset between MASTER and SLAVE REFRESH is
effected in LPI TIMER INIT state:
LPITIVER DISABLE = Define Ipi_init_timer duration differently between MASTER and
loc_lpi_state < IDLE SLAVE
loc_lpi_sync_timer_en = TRUE ¢ = MASTER Ipi_init_timer duration 0 ps
= SLAVE Ipi_init_timer duration 3000 us
LPI TIMER INIT ;
= This offset, i.e. 3000 us, should be maintained for lifetime of link
start Ipi_init_timer

pInt_tmer_done i ¢ ~ Maintain Ipi_refresh_timer and Ipi_quiet_timer:
= |pi_refresh_timer 250 us
= |pi_quiet_timer 6000 ys

LPI TIMER REFRESH

start Ipi_refresh_timer
loc_Ipi_state <« REFRESH

Ipi_refresh_timer_done . . .
~ All timers here would be synchronized to symbol period

LPI TIMER QUIET (TX_TCLK). Might be defined in terms of symbol periods.
start Ipi_quiet_timer = As SLAVE maintains timing lock with MASTER, so timing
loc_lpi_state = QUIET relationship between MASTER and SLAVE LPI QUIET
Ipi_quiet_timer_done REFRESH cycling should also remain fixed (and predictable)
ANALOG

DEVICES

7 AHEAD OF WHAT'S POSSIBLE™

LPI QUIET REFRESH cycling

MASTER

loc_Ipi_state QUIET R QUIET R QUIET
SLAVE '
QUIET) R ('i)U[ET) R) QUIET

loc_Ipi_state
» > - >

\ Ipi__init_timer (SLAVE) = 3000 ps j

= Time offset between MASTER and SLAVE LPI QUIET REFRESH cycling remains fixed for lifetime
of link

= 3000 ps, as per Ipi_init_timer duration

ANALOG
DEVICES

- PHY Control LPI sequencing is simplified

PHY Control LPI sequencing « Combined LPI QUIET REFRESH state, with
QUIET/REFRESH mode determined by
loc_Ipi_state variable

SEND SLEEP

stop minwait_timer

staﬁ Ipi_sleep_timer (llpi_enabled) + SEND SLEEP

tx_mode < SEND_| (loc_revr_status = NOT_OK) +

loc_Ipi_req < TRUE (rem_rcvr_status = NOT_OK) + start Ipi_sleep_timer .

[‘ (tx_Ipi_active) tx_mode = SEND_| (Ypi_enabled) +
_ _ loc_Ipi = TRUE (loc_rcvr_status = NOT_OK) +
¢ Ipi_sleep_timer_done x — (rem_rcvr_status = NOT_OK) +
(B) Ipi_sleep_timer_done (‘tx_Ipi_active)
QUIET
start Ipi_quiet_timer
tx_mode < SEND_Z
LPI QUIET REFRESH G

Ipi_quiet_timer_done (llpi_enabled) + if (loc_lIpi_state = QUIET)

(loc_revr_status = NOT_OK) + tx_mode « SEND 7
(rem_rcvr_status = NOT_OK) + else -

Itx_Ipi_acti
(lx_Ipi_active) tx_mode < SEND_|

SEND REFRESH
tart Ipi refresh ti (!Ipi_enabled) +
?ximc?cliérecr?ssENEIJTFr (loc_rcvr_status = NOT_OK) +
loc_lpi_req <= TRUE SEND WAKE (rem_rcvr_status = NOT_OK) +
('tx_Ipi_active)

stop Ipi_quiet_timer
stop Ipi_refresh_timer

Ipi_refresh_timer_done start Ipi_wake_fimer
tx_mode < §EN D_|
(llpi_enabled) ¥ loc_lpi_req < FALSE_ SEND WAKE
(loc_revr_status = NOT_OK) + Ipi_wake_timer_done . .
(rem_rcvr_status = NOT_OK) + - - - start Ipi_wake_timer
(tx_Ipi_active) tx_mode = SEND_|
(B) loc_lIpi = FALSE
. . Ipi_wake_timer_done
Figure 146-15—PHY Control state diagram (part b) ANALOG

DEVICES

9 G AHEAD OF WHAT'S POSSIBLE™

PHY Control LPI sequencing — Ipi_sleep_timer duration

@ ~ Propose to reduce Ipi_sleep_timer duration
SEND SLEEP / = Currently this is set to 250 us (as per Graber 3cg 0la 0419)

start Ipi_sleep_timer ot enablec = The reason for the relatively long duration here is to allow any
- llpi_enabled) +
102 i < TRUE (oc_rcur_status = NOT_OK) + ongoing adaptation tasks to complete before transmission
(rem_rcvr_status = NOT_OK) + .
Ipi_sleep_timer_done (tx_lpi_active) ceases In QUIET state.
= But, given that link partner LPI QUIET REFRESH cycling can
LPI QUIET REFRESH B be known with certainty, a PHY should align to this, and should
i (oc_lpi_state = QUIET) never require a longer duration in SEND SLEEP.
tx_mode = SEND_Z7
® S mode = SEND. * Propose Ipi_sleep timer duration of 20 ys, same as
(Ipi_enabled) + minwait timer duration.
(loc_rcvr_status = NOT_OK) +] - o]])
o o iy > T NOTOH0 = Might be specified in terms of transmit symbol periods.
SEND WAKE

start Ipi_wake_timer
tx_mode < SEND |
loc_lpi = FALSE

Ipi_wake_timer_done &
G ANALOG

DEVICES

AHEAD OF WHAT'S POSSIBLE™

10

http://www.ieee802.org/3/cg/public/adhoc/Graber_3cg_01a_0419.pdf

L Pl and frame transmission

loc_Ipi_state QUIET ’ R QUIET ’ R | QUIET
T MII LPI IDLE | DATA | LPI
PHY Control LPI QUIET REFRESH e | SEND IDLE OR DATA S LPI QUIET REFRESH
tx_mode SEND_Z SEND_I| SEND Z SEND | SEND_N | SEND_Z
- LPIQUIETREFRESH
cycling is independentof 7
data trafic 7
- In this example, LPI loc_Ipi_state QUIET R QUIET

REFRESH coincides with
end of frame

= Acts to delay cessation of
transmission on the line,
tx_mode = SEND_Z, until
end of REFRESH

11

——
Tx MlI DATA IDLE LPI

PHY Control SEND IDLE OR DATA B
SLEEP
: —

tx_mode SEND_N

LPI QUIET REFRESH

SEND _| SEND_Z

ANALOG
DEVICES

AHEAD OF WHAT'S POSSIBLE™

Potential energy savings

= The reduced duration of the Ipi_sleep_timer provides for improved energy savings, as the QUIET
state should be reached sooner than in the current dratft.
= A persistent data traffic pattern which provides a short period of LPI assertion between sending frames can

even prevent entry to LPI QUIET altogether, if the period of LPI assertion is less than the Ipi_sleep timer.
The only mitigation is to keep Ipi_sleep_timer to a minimum.

~ Knowledge of local and remote LPI refresh timing allows PHY implementation easier way of
planning for filter coefficient updates

ANALOG
DEVICES

12 AHEAD OF WHAT'S POSSIBLE™

MDC

woo] MANAGENENT Figure 146-11

Q e,]
s i LPIQUIET i -
@ i REFRESH I]
{ CYCLING i V3
tx_mode T -t
< tx_enable_mi loc_lpi_state : L E é
rem_revr_status [[& T P9
L H : -]
loc_lpi_sync_timer_en ' @
PHY : -
CONTROL link_control ; 3
Ll ' —
rx_Ipi_active V2
C e — — 1T T | P g
___;p_____—l_——____’ :%
loc_Ipi =
-« — - = — =T+ =+ — 1)
| link_status =
p O
I -
' LINK P
< link_status | MONITOR :
PMA_UNITDATA request (tx_symb_vector) |
| PMA P
TRANSMIT
| —
| recovered_clock
BI_DA+
| — BI_DA-
I
Li— 4+ — —| ¥
P loc_rcvr_status PMA
h scr_status | RECEIVE g
 PMA_UNITDATA.indication
(rx_symb_vector)
E received_clock i
)
: !
- CLOCK !
: RECOVERY '
PMA SERVICE MEDIUM
INTERFACE DEPENDENT
INTERFACE
(MDI)

NOTE 1—The “recovered_clock” shown indicates the delivery of the recovered clock back to PMA TRANSMIT in

SLAVE mode for loop timing. ANALOG

NOTE 2—Signals shown with dashed lines are required only for EEE functionality. DEVICES

Figure 146-11—PMA functional block diagram AHEAD OF WHAT'S POSSIBLE™

Thank you

ANALOG
DEVICES

14 AHEAD OF WHAT'S POSSIBLE™

Note on LPI signal naming

= loc_Ipi_reqg and rem_Ipi_req naming used in D3.0.

— These names have been lifted from 1000BASE-T (Clause 40), and are not used in other PHY
standards.

~ The naming is appropriate for the symmetric LPI scheme of 1000BASE-T, where the PHYs must
both simultaneously signal a request for LPI mode in order for the LPI mode to be entered.

= Where this is signalled from one PHY only it is only a request for LPI mode.

= In the context of 10BASE-T1L asymmetric LPI these names are inappropriate. For 10BASE-TL1L,
loc_Ipi_req does not represent a request, and is rather a signal that the PHY transmit has entered
the LPI mode of operation.

- Therefore, the following naming is proposed:
= |loc_Ipi_req — loc_lIpi
= rem_Ipi_req — rem_|Ipi
ANALOG

DEVICES
15 e AD OF WHAT'S POSSIBLE™

