

PIERGIORGIO BERUTO ANTONIO ORZELLI

IEEE802.3cg TF
PLCA overview
November 7th, 2017

What is PLCA?

- PHY-Level Collision Avoidance is meant to provide improved performance (throughput, max latency, fairness) over standard CSMA/CD method for multidrop Ethernet networks featuring low number of nodes (< 16) and low propagation delays (short cables).
 - CSMA/CD functions are provided by the MAC
 - PLCA functions are provided by the PHY
- Working principle is detecting transmit opportunities to avoid physical collisions on the line.
- Defined as an optional Reconciliation Sublayer
 - Proposed for adoption in 802.3cg group for the 10BASE-T1S PHY
 - Specified for 4B/5B coding but can be specified with different schemes as well
- What PLCA is not
 - Not a replacement of CSMA/CD \rightarrow PLCA relies on it
 - Not a replacement of TSN \rightarrow TSN expected to work on top of PLCA

Overview

In a nutshell

MAX BUS cycle → MAX latency

- PHYs are statically assigned unique IDs [0..N]
- PHY with ID = 0 is the master
 - Sends BEACON to signal the start of a BUS cycle and let slaves synchronize their timers
- A BUS cycle consists of N+1 variable size time slots plus the initial BEACON
 - PHYs are allowed to transmit only during the time slot which number matches their own ID
 - Time Slots end if nothing is transmitted within "MIN Time Slot" period or at the end of any transmission
 - PHYs are allowed to pad their own time slots with IDLE to compensate for any MAC latency (e.g. IFG)
- In numbers
 - BEACON time == MIN Time Slot == \sim 20 bT (bit-times) \rightarrow \sim 1.6 μ s assuming 4b/5b + DME encoding
 - MAX latency == BEACON time + PHYs LATENCY +MAX BUS Cycle (all PHYs transmit one packet of MAX size, e.g. 1542 Bytes including IFG) → \sim 12.500 bT * (N+1) → \sim 1ms per PHY assuming 4b/5b + DME
- Round-robin scheduling guarantees fairness

Relationship to CSMA/CD

- CSMA/CD MAC transmit process (from IEEE 802.3, clause 4)
 - If line is busy (CarrierSense = 1) \rightarrow wait (defer transmission)
 - Wait IPG (at least 96 bits)
 - Start transmitting, despite line becoming busy again
 - If a collision is detected (COL = 1) \rightarrow backoff:
 - Send jam for 32 bit times, stop transmission
 - Retry after random(0, ATTEMPTS) * 512 bit times
 - If ATTEMPTS > attemptLimit \rightarrow give up (discard packet)
- CRS / COL can be used to have the MAC defer transmission until next handshaking
 - Use CRS to have the MAC defer transmission
 - Use COL at most once and only at beginning of a packet
 - MAC is ready to re-send in at most 32 + 512 = 544 bit times
 - Less than minimum packet size (576 bits)

Example Waveforms

- Node #1 and #3 want to transmit data, others are silent
 - PHY #1 just defers TX until its own time slot is available
 - PHY #3 signals a collision because PHY #1 is transmitting, however:
 - No physical collisions on the line
 - Actual TX occurs immediately after PHY #1 transmission with no additional delay (MAX backoff + latency < MIN packet size)

CRS forced HIGH to prevent the MAC from transmitting until CUR_ID = 3

CRS forced LOW to have the MAC deliver the packet

Example Waveforms

MAC #1, 3 start transmitting. PHY #1, 3 framePending <= TRUE

> PHY #1 time slot begins, data is put on the line since framePending = TRUE

> > PHY #3 signals a collision to its MAC since PHY #1 carrier is sensed

> > > MAC #3 initiates backoff and sends JAM in response

MAC #3 backoff time always ends before PHY #1 transmission is over (attempt = 1)

MAC #3 does not perform a new attempt (yet) because CRS is asserted

> Time slot #1 ends when PHY#3 falls silent again

> > PHY #3 keeps CRS asserted as framePending == TRUE

Time slot #2 is yielded

PHY #3 de-asserts CRS (allow MAC to perform new attempt)

Phy #3 puts IDLE on the line to extend the time slot until MAC is transmitting

> MAC #3 waits for IFG then attempts transmission again. DATA is eventually put on the line

Clock Skew

PARAM	DESCRIPTION		
TT	PHY TX latency		
TL	Line propagation delay		
TR	PHY RX latency		
TM	margin		

- Total clock skew = 2 * (TT + TL + TR)
- Margin > 0 for the system to work
- TS_TIMER > TOTAL SKEW

PLCA functions

PLCA functions

- Full digital simulation (verilog)
 - 4b/5b encoding + DME

- PHY: standard 10BASE-T or 10BASE-T1S + PLCA
- MAC: standard CSMA/CD capable MAC (802.3 clause 4)
 - host interface: DPRAM (one frame) + busy indication + size + trigger
 - PHY interface: MII (txd, txclk, txen, txer, rxd, rxclk, rxdv, rxer, col, crs)
- HOST: simple transmitter
 - wait for MAC BUSY = 0
 - wait random time between 0 and MTP (sim parameter, 0 = MAX speed)
 - write random data in DPRAM of size PKTSZ (sim. parameter 60 < PKTSZ < 1500) or random size
- SNIFFER: measuring throughput, latency
 - throughput: number of received bytes (excluding FCS, PREAMBLE) / total simulation time
 - latency: time between MAC BUSY = 1 and MAC BUSY = 0 for each node

- 500 pkts, size = 60B, variable MTP, 6 nodes. Latencies in μ s.
- Comparison between simple half-duplex 10base-T and PLCA

MTP	MAX_LAT	AVG_LAT	STDEV
0	57595.6	553.3	4826.0
500	59692.8	1034.2	4637.4
2000	29387.5	618.9	2298.2
5000	19645.4	264.0	1035.7

10base-T

MTP	MAX_LAT	AVG_LAT	STDEV
0	443.4	441.1	26.2
500	546.4	186.4	90.7
2000	269.2	74.8	31.6
5000	223.7	64.0	17.8

PLCA

Thank You!