Canova Tech The Art of Silicon Sculpting

PIERGIORGIO BERUTO ANTONIO ORZELLI

IEEE802.3cg WG PHY-Level Collision Avoidance

> *rev.* 1.0 *August 2nd, 2017*

- Idea for half-duplex *multi-drop* short-reach PHY
 - Media access multiplexing protocol
 - Collision-Avoidance scheme
- Objectives
 - Interworking with standard CSMA/CD MAC
 - No modifications to MAC, everything done at PHY level
 - Beat CSMA/CD performance, especially at high bus loads
 - Lower complexity than existing TDMA systems (e.g. EPON)

MIX of CSMA and TDMA

-exploiting limited number of nodes-

- Assumptions
 - Up to 6 nodes with pre-configured unique IDs (0-5)
 - ID = 0 is the "master" node
 - Interface to 10Mbit half-duplex CSMA/CD capable MAC
 - PCS encoding shall allow more signaling (SSD, ESD, ACK, NACK)
- Basics
 - PHYs send packet in sequence (no collisions)
 - Also good for fairness! (no starvation)
 - Starting from master, each PHY sends ACK + DATA or NACK in turn, following unique ID order.
 - no additional overhead as long as ACK/NACK < IPG *(see next slide)*
 - no waste of bandwidth (PHYs with nothing to send just "skip the turn")
 - Implicit NACK after timeout to handle absent/link-down nodes
 - Constraint on maximum allowed TX/RX latency
 - Trade-off with max achievable throughput

Example with 3 PHYs

BUS

CANOVATECH The Art of Silicon Sculpting

DATA

Devil is in the details: how does a PHY know whether the MAC has something to send?

- It's not possible via MII to have such information in advance
 - [ugly] Buffering the packet? ightarrow increase latency, relative cost
 - [bold] Modify the MAC? \rightarrow against objectives
 - Exploiting existing CSMA/CD (COL, CRS) \rightarrow let's see . . .!

- CSMA/CD MAC transmit process (from IEEE 802.3, clause 4)
 - If line is busy (CRS = 1) \rightarrow wait (defer transmission)
 - Wait IPG (at least 96 bits)
 - Start transmitting, despite line becoming busy again
 - If a collision is detected (COL = 1) \rightarrow backoff:
 - Send jam for 32 bit times, stop transmission
 - Retry after random(0, ATTEMPTS) * 512 bit times
 - If ATTEMPTS > attemptLimit \rightarrow give up (discard packet)
- CRS / COL can be used to have the MAC defer transmission until next handshaking
 - Use CRS to have the MAC defer transmission
 - Use COL at most once and only at beginning of a packet
 - MAC is ready to re-send in at most 32 + 512 = 544 bit times
 - Less than minimum packet size (576 bits)
 - COLLISION AVOIDED, NO WASTE OF BUS TIME!

- PHY could be designed as follows:
 - — CRS shall indicate when data (not ACK/NACK) is on the line → standard behavior
 - If TX_EN = 1, start buffering (small buffer, i.e. 2 x handshaking time at most).
 - If it's our own handshake time ightarrow send ACK and DATA (DONE)
 - If another PHY's ACK is received instead
 - Set COL = 1 (force the MAC to backoff, ATTEMPTS = 1)
 - Keep CRS = 1 (force MAC to keep the packet, avoid further ATTEMPTS)
 - Flush the buffer (discard JAM)
 - At next own handshake time, set CRS = 0 (allow MAC to send), send ACK + DATA - IPG honored by the MAC!
 - The backoff can only occur once, at the very beginning of the frame!
 - Mission accomplished!

- Digital simulation of up to 6 PHYs
 - Verilog behavioral model of MAC and multidrop PHY
 - Encoding 4b5b + DME (25Mhz BW)
 - Just as an example: not the focus of this presentation
 - Use 5b S/R commands to represent ACK/NACK
 - PHY buffer of 12 bytes
- Proof-of-concept of handshaking protocol
 - Measure of throughput under different load conditions
 - Comparison with point-to-point full-duplex PHY
 - -LOAD = 100% each MAC sends data as soon as it can

Simulation results #1

- Scenario: 4 PHYs, each needs to send one packet at the same time
 - 1. All PHYs start buffering during NACK of PHY #1
 - 2. PHY #2 is the first to send ACK + DATA
 - 3. All other PHYs assert COL to force the MAC to backoff (NOTE: this is NOT a real collision!) and keep CRS high
 - 4. End of PHY #2 packet, PHY #3 sends ACK and de-assert CRS.
 - 5. PHY #3 sends data after IPG
 - 6. Last PHY (1) sends data
 - 7. All PHYs send NACK (idle) as they have nothing more to send

Simulation results #1

- Scenario: 4 PHYs, each needs to send one packet at the same time
 - 1. All PHYs start buffering during NACK of PHY #1
 - 2. PHY #2 is the first to send ACK + DATA
 - 3. All other PHYs assert COL to force the MAC to backoff (NOTE: this is NOT a real collision!) and keep CRS high
 - 4. End of PHY #2 packet, PHY #3 sends ACK and de-assert CRS.
 - 5. PHY #3 sends data after IPG
 - 6. Last PHY (1) sends data
 - 7. All PHYs send NACK (idle) as they have nothing more to send

Simulation results #3

TOT PHYS		XMIT PHYs		THROUGHPUT %	
	2		1	-1.18	
	3		1	-2.35	
	4		1	-3.53	
	5		1	-2.35	
	6		1	-5.88	-
	2		2	-0.59	
	3		3	-0.59	
	4		4	-0.59	
	5		5	-0.59	
	6		6	-0.59	

Relative throughput loss, compared to point to point full duplex case

PKT_SZ = 60 B payload (i.e. no preamble, CRC) LOAD = 100%

TOT PHYS	XMIT PHYs		THROUGHPUT %
2	2	1	-0.1
3	3	1	-0.19
4	1	1	-0.29
5	5	1	-0.19
e	5	1	-0.48
2	2	2	-0.05
3	3	3	-0.05
4	l l	4	-0.05
5	5	5	-0.05
e	5	6	-0.05

_ PKT_SZ = 1500 B payload LOAD = 100%

- More simulations
 - Any interesting parameter to measure?
 - e.g. Latency?
 - More use-cases?
- Add logic for nodes joining / leaving the BUS
 - e.g. use different signaling for master's ACK/NACK to allow other PHYs to achieve synchronization
- Robustness
 - Errored ACK/NACK handling
 - Possible idea: use robust coding of ACK/NACK so that the chance of losing all of the bits is negligible → in case of error, don't transmit and re-sync on master ACK.
 - Corner cases study
- Optional
 - Auto-negotiation of IDs (instead of static config)?
 - e.g. use plain CSMA/CD for electing the master
 - On-the-fly election of new master for failover?

Thank You !

