

10BASE-T1S OAM

Tim Baggett

IEEE 802.3cg Task Force – Ad Hoc – 20 June 2018

Outline

- Clause 57: OAM A Brief Overview
- OAM on 1000BASE-T1
- 10BASE-T1S Preamble OAM Issues
- Other OAM use on 10BASE-T1S?
- Conclusion
- References

Clause 57: OAM A (very) Brief Overview

• Objectives

- Remote Failure Indication
 - e.g., non-operational receive path
- Remote data link layer loopback
- Link Monitoring
 - Inclusion of link diagnostic information
- Clause 30 MIB variable polling (no writing/setting)
- Optional OAM capability discovery

• Traverse only a single link

- Not forwarded by MAC clients
- No mention of use on mixing segments
 - OAM is intended for point-to-point links only (57.1.5.1)

Clause 57: OAM

• OAMPDU – OAM Packet Data Units

- Encapsulated within standard Ethernet frames
- Slow Protocols (Annex 57A)
- Multicast address 01-80-C2-00-00-02
 - Does not target a specific PHY
- EtherType 88-09
- Slow Protocol Subtype 03

OAM on 1000BASE-T1

Only point-to-point

- Peer PHY in communication is assumed
 - No need for addressing
 - Know which PHY is acknowledging

• OAM sent in normal mode data frames

• 4050-bit, Reed Solomon FEC protected

OAM on 1000BASE-T1

• Low Power Idle

- Periodic REFRESH is needed to retrain receive equalizer when no Ethernet frames are being transmitted
 - Creative use as a side-channel for OAM, outside normal Ethernet frames
 - OAM can be used to wake up the transmitter if the equalizer drifts too much reducing SNR

10BASE-T1S Preamble OAM Issues

Point-to-Point

• Only one other PHY, no addressing is needed

Multi-drop

- Ambiguous multi-drop PHY addressing
 - All PHY will receive the OAM
- PHY acknowledgement ambiguity
 - Which PHY gets to acknowledge? Which PHY did acknowledge?
 - Acknowledgement is critical for MDIO register / PHY flow control
- Arbitration is missing to prevent multiple simultaneous OAM transmissions from multiple senders
 - Phys receiving fragments from multiple transmitters.
- Limited space in Preamble to support these

10BASE-T1S Preamble OAM Issues

• OAM can block

- DME idle silence \rightarrow inherently energy efficient
- Will not transmit if there is no data to send
 - No receive equalizer to maintain with REFRESH
 - No side-channel as in 1000BASE-T1
- OAM cannot be sent if there are no Ethernet frames to transmit

Other OAM use on 10BASE-T1S?

• Wake-up?

- Receiver must be awake to receive a preamble OAM.
 - The transmitter will be powered down when not in use.
 - Wake-on-LAN (WoL) can target a specific MAC address (PHY).

• Ping – Are you there?

- Transmission of many data frames are required for the preamble OAM
 - Sending a single Clause 57 OAM Ethernet frame is more efficient.

Other OAM use on 10BASE-T1S?

Remote Signal Control/Sense

- Assign OAM bits to control general purpose digital outputs, or sense an input?
- Assign OAM bits to individual PHY to wake up?
- Breaks the OSI layer model.

Master Broadcast

- Possible use to instruct all PHY on mixing segment to enter a diagnostics mode
 - Acknowledgement is not necessary.
 - Use a different method of returning results due to lack of addressing and arbitration.
 - Only one PHY can be designated as transmitter

Conclusion

• T1S Preamble OAM is impractical.

- No idle side-channel communication when not transmitting as there was in 1000BASE-T1.
 - Standard Clause 57 OAM can be implemented without additional complication to the PHY.
- OAM will not work with multi-drop mixed segments.
 - No PHY addressing, arbitration; acknowledgement issues
 - No room in the preamble to properly address these issues
- Preamble OAM does not provide enough system improvement over Clause 57 OAM to justify added PHY complexity.
 - Open Alliance may standardize Clause 57 for automotive use, and propose changes adapting it for use in mixing segments.

REFERENCES

References (General)

• Standard OAM

- Operations, Administration, and Maintenance (OAM)
 - IEEE Std 802.3-2015, Clause 57, Annex 57A

References (802.3bp)

• 1000BASE-T1 (802.3bp)

- Physical Layer Specifications and Management Parameters for 1 Gb/s Operation over a Single Twisted-Pair Copper Cable
 - IEEE Std 802.3bp-2016
- Proposal for an OAM channel v.0.1
 - Schmutzler, Larios, Matheus, et-al.
 - <u>http://www.ieee802.org/3/bp/public/nov14/Matheus_3bp_01_</u>
 <u>1114.pdf</u>
- OAM Proposal
 - William Lo
 - <u>http://www.ieee802.org/3/bp/public/jan15/Lo_3bp_02_0115.p</u> <u>df</u>

References (802.3bp)

- Idle Request During LPI Using OAM
 - William Lo
 - <u>http://www.ieee802.org/3/bp/public/jan15/Lo_3bp_03_0115.p</u>
 <u>df</u>
- 1000BASE-T1 OAM Proposed Text
 - William Lo
 - <u>http://www.ieee802.org/3/bp/public/jan15/Lo_3bp_04_0115.p</u>
 <u>df</u>
- OAM Data Transfer During LPI
 - Graba, Tu, et-al.
 - <u>http://www.ieee802.org/3/bp/public/jan15/graba_3bp_01_011</u>
 <u>5.pdf</u>

References (802.3bp)

- 1000BASE-T1 OAM Additional Proposed Text
 - William Lo
 - <u>http://www.ieee802.org/3/bp/public/feb15/Lo_3bp_01a_0215.</u> pdf
- OAM FEC During LPI
 - Graba, Tu, et-al.
 - <u>http://www.ieee802.org/3/bp/public/feb15/graba_3bp_01a_02</u>
 <u>15.pdf</u>
- 1000BASE-T1 Registers Proposed Text
 - Lo, McClellan
 - <u>http://www.ieee802.org/3/bp/public/mar15/Lo_McClellan_3bp</u>
 <u>01a_0315.pdf</u>

References (802.3cg)

• 10BASE-T1S (802.3cg)

- Physical Layer Specifications and Management Parameters for 10 Mb/s Operation and Associated Power Delivery over a Single Balanced Pair of Conductors
 - IEEE P802.3cg / D1.3
- Proposed changes to D1.2 for Clauses 147 and 45
 - Cordaro, Tazebay, et-al.
 - <u>http://www.ieee802.org/3/cg/public/adhoc/cordaro_3cg_02_0</u>
 <u>509.pdf</u>
- OAM for 802.3cg 10BASE-T1S
 - Cordaro, Tazebay
 - <u>http://www.ieee802.org/3/cg/public/May2018/8023cg10base-</u> <u>t1s%200AM.PDF</u>

References (802.3cg)

- IEEE802.3cg TF T1S preamble
 - Beruto, Orzelli.
 - <u>http://www.ieee802.org/3/cg/public/May2018/beruto_3cg_04_0518.pdf</u>