

PIERGIORGIO BERUTO ANTONIO ORZELLI

IEEE 802.3cg Interworking between PLCA enabled nodes with non-PLCA enabled nodes *August 15th, 2018*

Public Document

- non-PLCA enabled nodes (from now on called "rogue" from PLCA perspective) can trigger physical collisions on the line
 - When PLCA is enabled, the PHY still detects physical collisions (see fig. 148-7/2 TRANSMIT) which are reported to the MAC via PLS_SIGNAL.indication primitive, triggering back-offs as normal
- Network shall still be able to operate, eventually with degraded performance, i.e.
 - All nodes shall still be able to access the media
 - PLCA improvements waived, plain CSMA/CD behavior takes precedence
- PLCA operations resume without external intervention as soon as there are no more rogues "jamming" the PLCA mechanism.
- Need for a way to detect this condition and notify the management layers
- In other words:
 - PLCA is CSMA/CD with improvements so it shall interwork with non-PLCA enabled nodes natively.

- Assuming that a "rogue" node is transmitting, what can actually happen?
 - The rogue transmits during another PLCA-enabled node's transmit opportunity. Two possibilities from here:
 - a) the "robbed" node was yielding the TO (no collision)
 - b) the "robbed" node was about to transmit a packet (collision)
 - rogue transmits over a BEACON (unlikely)
 - All PLCA enabled nodes wait for a new BEACON
 - rogue detects a physical collision, PLCA enabled nodes wait for a new BEACON (not a problem)

- Case (a): rogue "steals" the TO of a PLCA enabled node which had nothing to transmit
 - all nodes receive the packet as if it was sent by the node owning the TO (not a problem, node ID is not sent on the line. Identifying the sender is the MAC's job)
 - "robbed" node receives the packet as well but does not increment the TO counter (because of YIELD)
 - not a problem for nodes with non-zero ID (would wait for a new BEACON before transmitting, anyway)
 - problem for the PLCA coordinator (ID = 0): BEACON would be sent earlier than normal.
 - Fix to FSM is required

- Case (b): both the rogue and the PLCA enabled node transmit a packet, resulting in a collision
 - MACs back-off with increased transmission attempt counter, as normal
 - At next transmit opportunity the "robbed" PHY would transmit with increased commit time (depending on random back-off time).
 - If physical collisions keep occurring (because of the rogue transmitting), at some point the MAC gives up (discards the packet) leaving PLCA stuck in COMMIT state.
 - Fix requires adding a timer to get out of COMMIT state in this case.
 - Also useful in case the MAC resets without notice.

Public Document

CANOVATECH The Art of Silicon Sculpting

- 148.4.6.4 Timers
 - COMMIT_TIMER
 - Defines the maximum time the PLCA Data state machine is allowed to stay in WAIT_MAC state. Duration: 192 bit times
- 45.2.3
 - Add register 3.2294 "10BASE-T1S PCS Diagnostic 2"
 - Add register description

Bit(s)	Name	Description	R/W
3.2294.15:0	PhysicalColCnt	16 bit field counting the number of physical collisions occurred since last read of this register.	RO - SC

— PhysicalColCnt

• Shall report the number of physical collisions (i.e. excluding the ones triggered by the optional PLCA RS) occurred since last time register 3.2294 was read.

- PLCA enabled nodes are expected to interwork with non PLCA enabled nodes on the same mixing segment network
 - When all nodes support and enable PLCA, performance is improved as expected
 - Otherwise the network behaves just as in normal CSMA/CD mode
- Bugs were found in current specifications that in some corner cases could lead to interworking problems in presence of physical collisions:
 - PLCA coordinator could send a BEACON earlier when yielding the transmit opportunity
 - PLCA could get stuck in COMMIT/WAIT_MAC states if MAC perform too many transmission attempts (because of physical collisions) and discards the packet
- Proposals to fix the bugs were shown
 - Addition of a diagnostic register to report physical collisions is proposed as well

THANK YOU!

Public Document