Proposed Preamble: Synchronization and Harness Defect Detection April 11, 2017

Jay Cordaro Broadcom, Inc.

Contributors

- Mehdi Kilani
- Mehmet Tazebay

Outline

- Addressing Some Concerns Regarding Proposed Preamble
- 802.3br support
- Scrambler Field
- Beacon Detection
- Correlation
- Correlation, Current vs. Propoposed Sequences
- Simulation
 - Setup
 - Ga32 vs current preamble
 - Gb32 vs current BEACON
- Relative Complexity Comparision
- Additional Advantage: Harness Defect Detection
 - TDT
 - TDR
- Optimum DME Detection
- Summary

Addressing Concerns Regarding the Proposed Preamble

To address some issues and concerns with preamble proposed in [1] and [2]:

- "Not DC balanced"
 - 802.3 Clause 98 preamble is not DC balanced either (+6). Still works w/DME & PoDL.
- "Preamble not DME encoded"
 - 802.3 Clauses 98 & 73, and 802.5 are DME standards where preamble is not DME.
- "3 level signaling"
 - Clause 147.3.2 already specifies driving BI_DA± at 0V for point-to-point.
- "Requires ADC"
 - Can be detected with comparator more reliably than JJJK.
- "Cannot support preemption"
 - Revised format 7th preamble octet and SFD now 4B5B encoded and DME Modulated.

Current vs. Revised Proposed 10BT-1S Preamble w/802.3br Support

- Current: 4B5B Encoded + DME Modulated Preamble + SFD in 802.3cg D1p1 is $64^{(\frac{5}{4})}=80$ symbols (T2) or 160 T3
- Proposed: Ga32, 32 zeros, Gb32, 16 zeros, 4 DME modulated bits (PHY only) for scrambler seed setting + 7th Preamble octet and SFD 4B5B encoded and DME modulated.

SCH Field

- Additive (sidestream) scrambler $1+x^4+x^{15}$ applied after SCH field.
- SCH field is 4 bits DME modulated (not 4B5B encoded) sent LSB First.
- SCH does not pass to MAC and does not need 4B5B encoding.
- Allows descrambler to be initialized with same seed value as scrambler.
- Scrambler can be turned off.

SCH	FUNCTION		
4'b0000	Scrambler Disabled		
4'b1000	Scrambler Enabled scr_inital_state=15'b001111100110101		
4'b1001	Scrambler Enabled scr_inital_state=15'b011111100110101		
4'b1010	Scrambler Enabled scr_inital_state=15'b101111100110101		
4'b1011	Scrambler Enabled scr_inital_state=15'b11111100110101		
4'b1100	Scrambler Enabled scr_inital_state=15'b001010011000001		
4'b1101	Scrambler Enabled scr_inital_state=15'b011010011000001		
4'b1110	Scrambler Enabled scr_inital_state=15'b101010011000001		
4'b1111	Scrambler Enabled scr_inital_state=15'b111010011000001		
All others	Reserved		

Addressing BEACON Detection Time Concern I

- Use Ga32 for frame preamble → Shorter than 4b/5b DME modulated JJJK.
 - 1. Detect Ga32.
 - 2. Then, (optional) look for Gb32 at 64 T3s from Ga32 for further synchronization and other benefits.

Addressing BEACON Detection Time Concern II

- Use Gb32 for BEACON instead of 4B5B 'NNNN'
- Budišin structure can be used to detect both BEACON and preamble.
 - Select largest when peak above threshold.
 - Balanced D Flip-Flops added to structure after every adder.
 - Helps close timing in older processes.
 - Still allows detection of BEACON or preamble in <20 bit times/40T3.

Modified Budišin Structure for Preamble/BEACON Detection

Current Preamble & Beacon vs. Proposed Sequences

- Sequences normalized for comparison purposes of energy in main peak vs. sidelobes.
- Ga32 has more energy concentrated in main peak than current 'JJJK'.
- Gb32 has more energy concentrated in main peak than current 'NNNN'.
- \rightarrow Ga32 and Gb32 are better sequences for detection of preamble and BEACON.

Simulation Setup

- Preamble: Current vs. Proposed
- BEACON: Current vs. Proposed
- TX Voltage: 1V pk-pk=500mV_{RMS}
- TX filtering: 2nd order Butterworth
 - fc of 30MHz
- White noise: -30dBc added
- H(t) "Max" Cable model.
 - Built & measured w/100BASE-T1 cables
 - Node 2->Node3 presented.

 CW interference: 178mV_{RMS} from 1-30MHz from [3] in 500kHz freq. steps, ^π/₄ phase steps.

 $178 \text{mV}_{\text{RMS}} = 500 \text{mV}_{\text{pk-pk}} = 20 \log 10 \left(\frac{500 \text{mV}_{TX_RMS}}{178 \text{mV}_{CW_NBI_RMS}} \right)$

- RX Filtering:
- 1st order HPF fc of 1 MHz.
- 2nd order Butterworth RX LPF fc 30MHz.
- RX: with appropriate preamble, compare
 - Matched filters (MF) for current preamble & BEACON.
 - MF for proposed preamble & BEACON.

Preamble Synchronization with CW Noise, Multibit ADC

- Correlation normalized so smallest peak in main lobe is '1'.
- Evaluate peak sidelobe height vs. main peak.
- Both detectible, JJJK has a max absolute sidelobe peak of 0.866.
- Ga32 has more margin (max absolute sidelobe peak of 0.48)
- \rightarrow Ga32 is the superior preamble for detection of preamble with multibit ADCs.

Preamble Synchronization with CW Noise, Comparator

- Absolute height of JJJK peak sidelobe (0.96) is almost height of main peak minimum.
- If detector misses main peak, likely to mis-detect later.
- Ga32 has lower sidelobe peaks (0.825) and is still detectible with simple threshold detector.
 - \rightarrow Ga32 is the superior preamble for operation.

BEACON Synchronization and Detection with CW Noise, Multibit ADC

- Correlation normalized for both sequences so smallest peak in main lobe is '1'.
- NNNN BEACON has normalized sidelobe height well in excess of minimum of main peak.
 - Makes reliable detection very difficult
- Gb32 normalized absolute sidelobe height of .48.
 - Proposed Gb32 is superior for BEACON in presence of CW noise.

BEACON Synchronization and Detection with CW Noise, Comparator

- Normalized absolute Gb32 sidelobe height of 0.88 versus 1.4 for NNNN.
- Proposed Gb32 is superior for BEACON detection and synchronization with comparator ADC input in the presence of CW noise.

Relative Complexity Analysis

	Multi-bit Clause 98 Correlator	JJJK & NNNN Correlators w/ comparator input ¹	Optimized correlator, proposed preamble & BEACON w/ comparator ² input
NAND Gates	100%	52%	<20%

1 Direct-Form I comparator ADC input

2 Optimized proposed correlator using Budišin architecture.

• If using correlator for preamble/BEACON detection, need two correlator structures with current versus one with proposed.

Harness Defect Detection (HDD)

- Correlator driven by multibit ADC with proposed preamble allows low-complexity Harness Defect Detection (HDD)
 - Time Domain Transfer
 - Time Domain Reflectometry
- No extra hardware/logic required.
- Not necessary to perform in real time. Can store and calculate offline.
- Superior Dynamic Range vs. standard TDR.

Time Domain Transfer (TDT)

Correlation Output Multibit ADC Input Time Domain Transfer Proposed Golay Preamble "Max" Cable Configuation Node 2->Node 3

- Sum of Ga32 and Gb32 gives TDT the impulse response from TX to RX.
- Not necessary for synchronization. Can compute offline periodically.
- TDT Indicates maximum possible quality of link more information than SQI/MSE.
- Measuring TDT over time can measure aging of components (CMC, harness)

Golay Time Domain Reflectometry (TDR)

- Operating RX correlator while transmitting preamble gives TDR
- Useful for debugging harness defects
 - Cable Short and Location.
 - Cable Open and location.
 - One wire in cable pair open and location.

DME Encoding and Detection

- DME Alphabets defined in 802.3 Clauses 73, 98, 147 as:
 - '1' {[1 -1], [-1 1]}
- '0' {[1 1], [-1 -1]}
 Alphabets are orthogonal with
- distance $\sqrt{2E}$ between symbols from different alphabets.
- Symbols in same alphabet are distance $2\sqrt{E}$. See [4] & [5]

Figure showing 4B5B Encoded "C" and "A" decoded using Orthogonal Detection

Figure showing Orthogonal Detection Symbol Distance

Note: signal constellation in vector space. See [4] Example 6.4

Differential Detection of DME

- Shift Detection interval by one T3.
- If symbol phase is equal to previous symbol phase, decode
 '1'.
- If phase is shifted by 180°, decode '0'
- Makes detection antipodal with distance $2\sqrt{E}$ between symbols.
- distance 2√E between symbols. Figure showing Differential Detection Symbol Distance
 As current symbol is detected by difference in phase with previous, 1 decoded error usually becomes 2, however errors become much fewer.

Figure showing 4B5B Encoded "C" and "A" Better if a dummy "0" decoded using Differential Detection appended to end $2\sqrt{E}$ 19- ϑ_2

Differential Detection Performance Improvement

- Differential detection improves performance by 3dB in AWGN.
- Increased signal distance improves performance in any type of noise.
- DME is reliably detectible with > 500mVpk-pk of CW Noise added.
- A separate preamble detector makes differential detection straightforward.

Summary

- Ga32 & Gb32 have superior synchronization properties vs. 4B5B-encoded JJJK
 & NNNN, and showed to operate with noise in excess of 500mV_{pk-pk}.
- Differential detection of DME increases performance by 3dB.
- Proposed preamble with multi-bit ADC provides Harness Detect Detection for TDT and TDR without additional hardware.
- Propose to:
 - 1. Use Ga32/Gb32 for preamble and harness defect detection.
 - 2. Use Gb32 by itself for BEACON.
 - 3. Transmit dummy zero for differential detection after ESDERR and ESDOK Add to 147.3.2.2 Variables and add dummy zero to Figure 147-5
 - 4. Use SCH field & proposed scrambler for peak emissions reduction.

References

[1] "New Preamble Proposal for 10BASE-T1S" J. Cordaro http://www.ieee802.org/3/cg/public/adhoc/cordaro_8023cg_short_reach_new_preamble_pro posal_1220.pdf

[2] "Follow-up to New Preamble Proposal for 10BASE-T1S" J. Cordaro, A. Chini, M. Tazebay <u>http://www.ieee802.org/3/cg/public/adhoc/cordaro_8023cg_01_0118_v2.pdf</u>

[3] "Follow-up to 10BASE-T1S Immunity Measurements" J. Cordaro <u>http://www.ieee802.org/3/cg/public/adhoc/cordaro_3cg_05_04418.pdf</u>

[4] J. R. Barry, E. A. Lee, and D. G. Messerschmitt, *Digital communication*, *3rd Edition*. New York: Springer Science Business Media, LLC, 2004 pp. 212-213,253-256

[5] D. Divsalar, M.K. Simon, "Some interesting observations for certain line codes with application to RFID", <u>IEEE Transactions on Communications</u> (Volume: 54, <u>Issue: 4</u>, April 2006) pp 583 - 586