Immunity Measurements and Considerations for 10BASE-T1S

February 14, 2018

Jay Cordaro Broadcom

Contributors

- Mehdi Kilani
- Neven Pischl
- Mehmet Tazebay
- Ahmad Chini

Problem Statement and Objective

- What is effect of CW interference on 10BASE-T1S multidrop channels?
- Utilize Bulk Current Injection (BCI) test method to quantify and measure the common mode (CM) & differential mode (DM) voltages induced on a multidrop cable configuration.
- Besides compliance to ISO11452-4, BCl can be a useful tool to predict in-car noise immunity.
- Given BCI measurements, evaluate if Broadcom proposed preamble can synchronize in noise levels obtained in BCI test and detect DME payload.

"min" Passive Linear Topology BCI Setup

- "min" Passive linear topology from [1] except 100Ω passive termination at cable ends[2].
- 100BASE-T1 Cables 5cm above ground plane.
- 100BASE-T1 CMC and 1KΩ differential termination at nodes. Node ground connected to gnd plane
- BCI clamp located 75cm from end of 4.95m side of harness.
- Injection is calibrated for 200mA over 50Ω Load
- Sweep CW from 1MHz to 50 MHz in 250kHz steps.
- Measure common-mode CM and DM noise at points A and B after CMC using oscilloscope.

[1] "10SPE automotive PHY multidrop topology proposals", Buntz, http://www.ieee802.org/3/cg/public/adhoc/buntz_10SPE_05b_0329.pdf
[2] 802.3cg Draft 1.1 147.5.1.2 & Figure 147–10

Measured Sdc21 from Node "H" To Node A

Mode conversion of cable harness is well below Mode Conversion limit defined in 147.6.3 D1.1

Common Mode Voltage Measurement

Significant common mode on cable especially at resonances and low frequencies

Differential Mode Voltage

- Significant differential mode noise present on PHY side of CMC as well.
- Note in comparison with slide 5 how CM is generally attenuated by CMC but DM is not

Observations

- The results show substantial common-mode and differential-mode noise at nodes A and B of the 'min' topology with BCI test level of 200mA.
- Other OEM BCI test levels could be higher (up to 355mA)
- Some cable topologies could have worse resonances.
- Cable harness had good Sdc21. Other cables may have more conversion.
- Frequencies below approx. 3.75MHz and above 20MHz can be filtered out.
- High-pass filtering at RX causes droop and low-pass filtering causes ISI.
- The passband (3.75MHz-20MHz) can have large CM and DM noise present.
- The 10BASE-T1S preamble needs to synchronize under operating conditions.

IEEE 802.3cg Task Force- February 14, 2018

Preamble and DME Payload Simulation

- BCI test shows more than 675mV pk-pk CW is possible in-band when resonances occur on cable harness.
- Even if the high peak at ~1MHz is outside of the passband (under ~3.75 MHz), due to its high level it can still affect the receiver.

Simulation Setup for Eye Diagram

- TX: 512 byte 12.5Mbps scrambled data frames
 - DME T3/T2 of 40ns/80ns per table 147-2
- TX Voltage: 1Vpk-pk at transmitter into 10Ω
- TX Filtering:
 - 2nd order Butterworth TX LPF: fc of 20MHz
 - 1st order TX HPF, fc of 100kHz
- White noise -30dBc
- H(t) "Min" channel. Node A->Node "Head"

- CW of 750mV pk-pk 1-30MHz on cable
 - CW phase swept from $-\pi$ to π in $\frac{\pi}{20}$ steps
- RX Filtering:
 - 1st Order Butterworth HPF fc of 3.75MHz
 - 2nd order Butterworth RX LPF fc 27MHz
- 2x OSR Budišin MF for proposed preamble
- 2x OSR Matched Filter for DME for payload

Received Signal MF Outputs for Preamble and DME

- Preamble matched filter output easy to detect and sync even in presence of high CW interference
- DME matched filter Eye Open

Conclusions

- Significant common mode and differential mode noise was measured on a 10BASE-T1S multidrop cable with a BCI test level of 200mA.
- Proposed preamble is able to synchronize under high differential noise conditions.
- The effect of high CM noise on PHY performance should be evaluated.
- For further work, we plan to investigate other cable topologies.