

MICROCHIP

A Leading Provider of Microcontroller, Mixed-Signal, Analog & Flash-IP Solutions

Future-proofing PLCA for priority-based transmit ordering

Contributors Michael Rentschler, Venkat Iyer

Introduction

- Communicating priority from MAC client to RS is being worked via NEA
- Following the suggestion from last ad-hoc meeting to future-proof PLCA for priority
- Goals in developing proposal
 - Minimize wait time for priority packet transmit
 - Wait till end of packet, not end of bus cycle
 - No adverse EMC impact
 - Robust in face of bit errors
 - Focus on 2 levels but extensible to more levels
 - Interoperate with simple nodes which don't need priority
 - Minimize changes to PLCA (state machines)

• Fixed priority assignment by node ID

- Starting with highest priority at ID=0, descending order
- Multiple IDs can be assigned per node (one per priority queue)

• Introduce Priority Request (PRQ) signaling

- Each node must be able to signal PRQ if curID > levelID
- PRQ can occur in front of a TO or alternately at the end of a frame
- Nodes can prevent use of lower priority TO by issuing PRQ
 - Receiving PRQ will cause the bus master to preempt the running bus cycle by issuing a new Beacon

PLCA Control SM

- How can this be integrated into current PLCA state machine?
 - Reserved/Unassigned IDs (Ux) will be inserted for PRQ signaling
 - If PRQs collide
 - PRQ signal can be the scrambled ID, to mitigate risk of phase cancellation
 - Collision detect 'not' needed; only required to sense carrier to detect PRQ
 - Very little change to PLCA control state machine
 - Master: WAIT_TO->EARLY_RECEIVE ->RECOVER, sends new beacon
 - Slave: WAIT_TO->EARLY_RECEIVE ->RESYNC, resyncs on new beacon

PLCA Data SM

• If there is no PRQ, PLCA data state machine is traversed as before

• During PRQ

- receiving=FALSE → PRQ doesn't go to MII RX
- Transmitters delay line(s) will continue to 'HOLD' TX symbols till TRANSMIT or COLLIDE
- No changes to PLCA Data state machine necessary

Extending to more levels

- Example with more priority levels
 - 3 nodes (A, B, C)
 - 3 priority levels per node (0, 1, 2), one segment for each
 - All, but highest segment, includes unassigned IDs (Ux)

- Optional: reduce number of IDs by eliminating unassigned IDs
 - Increase TO, split into two windows and use earlier window for PRQ
 - In WAIT_TO, CRS=FALSE actions delayed till latter half of TO
 - Alternately, nodes observe a PRQ window at the end of a frame

Prevent unfairness

- Fixed priority can cause unfairness, which may be undesired
- Possible solutions
 - Grouping priorities together into evenly balanced segments
 - An MLQ scheduler will allow fairness per level
 - Each MLQ level will operate it's own Round-Robin schedule
 - After a TO is used, that TO is yielded till curID reaches maxID or the ID of the next level
 - Prevent starvation of lower priority queues
 - Master monitors the time since the last full bus cycle
 - If extensive PRQ requests cause time to exceed a given limit, the master is able to ignore further PRQs

Conclusion

- Future proofing PLCA for priority based transmit ordering is possible by pre-empting bus cycle with new beacon
- Proposal meets goals identified earlier
 - Minimizes wait time for priority packet transmit
 - Limits wait to end of packet, not end of bus cycle
 - No adverse EMC impact
 - Robust in face of bit errors
 - Extensible to 2 or more levels of priority
 - Interoperates with simple nodes which don't need priority
 - Minimizes changes to PLCA (state machines)

Thank You!