STP cable in automotive environment

Taketo Kumada YAZAKI 2017.11.8.9

- 1. About in-vehicle influence
- 2. NGAUTO current situation
- 3. STP cable
 - In-vehicle influence
 - Degradation of the transmission characteristics
 - Structure and transmission characteristics more than 1 GHz
- 4. Summery

STP : Shielded Twisted Pair

1. About in-vehicle influence

Vehicle environment

- High temp. atmos. 105 ℃
- Low temp. atmos. -40 ℃
- High humidity atmos.
- Life time etc.

W/H assembling and vehicle installation

- Tensile
- Bending
- Wire band etc.

Figure 2: Tensile

Figure 3: Bending on Jig board

YAZAK

Figure 4: Bending in-vehicle

Figure 5: Wire band

Vehicle environment, W/H assembling and vehicles installation affect to transmission characteristics

> Initial data of components such as connector and cable are used.

Figure 7: PAM-8 eye pattern image

Figure 8: PAM-16 eye pattern image

AZAK

2. NGAUTO current situation

Running simulation using the initial data of components

Considering the in-vehicle influence below • Vehicle environment

- W/H assembling and vehicle installation
- Investigated link segment may not work in automotive environment

As the result of simulation, eye pattern doesn't open

Figure 9: PAM-16 eye pattern image

STP cable In-vehicle influence

Insertion loss

In-vehicle influence test

Test item	Test description	Tough level
High temp. atmos.	Measurement of transmission characteristic in 105 °C atmos.	$\checkmark \checkmark$
Low temp. atmos.	Measurement transmission characteristic in -40 ℃ atmos.	
High temp. and high humidity atmos.	Measurement transmission characteristic in 85 ℃, 85 %	
High temp. storage	Measurement transmission characteristic After 100℃, 3000 h aging	\checkmark
Tensile	Measure transmission characteristic with 100 N pulled	
Bending	Measurement transmission characteristic with R = 5 times of wire diameter	
Wire band	Measurement transmission characteristic with wire band	

√√ Toughest

 $\checkmark\,$ Second Toughest

YAZAKI

STP cable Degradation of transmission characteristics

STP cable is designed taking into consideration the degradation of transmission characteristics due to the influence of in-vehicle

The degradation of the transmission characteristics is assumed in the actual vehicles. Therefore, it is necessary to use cable data in consideration of the degradation in the simulation.

STP cable Structure and transmission characteristics more than 1GHz

Page 8 | 11

YAZAKI

STP cable Structure and transmission characteristics more than 1GHz

Insertion loss

Frequency	Initial value	105 °C atmos.		
	IL	IL	Change rate	
MHz	dB / 15m	dB / 15m	%	
10	-1.46	-1.63	11.2	
100	-3.95	-4.39	11.1	
1000	-13.5	-16.0	18.5	
2000	-19.8	-23.4	18.0	
3000	-28.5	-32.7	14.4	
3200	-29.1	-36.1	24.0	
$Change \ rate = \frac{(IL_{105 \ ^{\circ}C} \ atmos IL_{Initial} \ value)}{IL_{Initial} \ value}$				

YAZAK

- The change rate of insertion loss increases according to frequency
- The maximum change rate is 24 %

4. Summary

- With regard to the simulation for deciding the modulation method, it is necessary to consider degradation of the transmission characteristics of the cable due to the influence on the vehicle.
- The STP cable is designed with consideration of degradation of the transmission characteristics at the standard value of Ethernet 1 Gbps.
- The STP cable can secure bandwidth up to 3.2 GHz.
 Also it can shift bandwidth to high frequency band by cable structure.
- The change rate of insertion loss increase according to frequency. And the maximum change rate is 24%.

END Thank you for your attention

E-mail address : taketo.kumada@jp.yazaki.com

AZAKI

