Twinaxial Ethernet Compliance Test Points, Test Fixtures, and Cable Assemblies

Chris DiMinico, (MC Communications/PHY-SI LLC)

Channel and link Definitions

- The channel is defined between the transmitter and receiver blocks to include the transmitter and receiver differential controlled impedance printed circuit board and the cable assembly.
- The Media dependent interfaces (MDIs) refer to the connector interfaces. 100GBASE-CR4 specifies the quad small form factor pluggable (QSFP28) plug and receptacle.

Test Points and Descriptions

For conformance testing five test points are standardized.

Test Points	Description
TP0 to TP5	The channel is defined between the transmitter and receiver blocks to include the transmitter and receiver differential controlled impedance printed circuit board and the cable assembly.
TP1 to TP4	All cable assembly measurements between TP1 and TP4. are performed with the test fixtures specified in 100GBASE-CR4.
TP0 to TP2 TP3 to TP5	A mated connector pair is included in both the transmitter and receiver specifications.
TP2	Transmitter parameters are measured at TP2 utilizing the test fixture specified in 100GBASE-CR4.
TP3	Receiver parameters are measured at TP3 utilizing the test fixture specified in 100GBASE-CR4.

Channel Parameters and Insertion Loss Budgets

- TP0 and TP5 may not be accessible in an implemented system
- Information (not required for conformance) of channel transmission characteristics and insertion loss budgets provided in Annex's.

Parameter description	f(GHz)	Unit
Transmitter and receiver differential printed circuit board trace loss (host PCB insertion loss 6.81 dB @12.89 GHz)	0.05≤f≤19	dB
Channel Insertion Loss (6.81 dB @12.89 GHz)	0.05≤f≤19	dB
Maximum channel insertion Loss (35 dB @12.89 GHz)	0.05≤f≤19	dB
Minimum channel insertion loss (x dB @12.89 GHz)	0.05≤f≤19	dB
Channel operating margin (3 dB)		dB

Insertion loss budget @ 12.89 GHz

Test Fixture Specifications

- Test fixtures specified in a mated state used for testing the transmitter, the receiver and cable assembly measurements
 - The TP2/TP3 test fixture also known in the industry as Host Compliance Board (HCB) is required for measuring the transmitter specifications at TP2 and the receiver return loss at TP3.
 - The cable assembly test fixture also known in the industry as Module Compliance Board (MCB) is required for measuring the cable assembly specifications at TP1 and TP4.

Mated Test Fixtures Parameters

Parameter description	f(GHz)	Unit
Maximum insertion Loss	0.01≤f≤25	dB
Minimum Insertion Loss	0.01≤f≤25	dB
Minimum Return Loss	0.01≤f≤25	dB
Common-mode conversion insertion loss	0.01≤f≤25	dB
Common-mode return loss	0.01≤f≤25	dB
Common-mode to differential –mode return loss	0.01≤f≤25	dB
Integrated crosstalk noise		

Mated test fixtures parameters

Description	Symbol	Value	Units
Symbol rate	₽b	25.78125	GBd
Near-end disturber peak differential output amplitude	$A_{ m nt}$	600	шV
Far-end disturber peak differential output amplitude	A_{ft}	600	шV
Near-end disturber 20% to 80% rise and fall times	T_{nt}	9.6	ps
Far-end disturber 20% to 80% rise and fall times	T_{ft}	9.6	ps

Source: IEEE 802.3bj

Cable Assembly Characteristics TP1/TP4

The twinaxial copper cable assembly consists of shielded signal pairs utilized for differential signaling at 25 Gb/s per differential signal pair.

Parameter description	f(GHz)	Unit
Maximum Insertion Loss (22.48 dB)	@12.89 GHz	dB
Minimum Insertion Loss (8 dB @ 12.89 GHz	0.05≤f≤19	dB
Minimum Return Loss	0.05≤f≤19	dB
Differential to common-mode return loss	0.05≤f≤19	dB
Differential to common-mode conversion loss	0.05≤f≤19	dB
Common-mode to common -mode return loss	0.05≤f≤19	dB
Common-mode to common -mode return loss	0.05≤f≤19	dB
Cable assembly Channel Operating Margin (3 dB)		dB

802.3bj/by/cd - Tx/Rx receiver PCB IL

- The recommended maximum and minimum printed circuit board trace insertion losses are specified in
- Equation (92A–1) and Equation (92A–2), respectively. Specified in 92A.4 EQ(92A-1 (max) and 92A-2 (min))— referenced 110A.4

```
IL_{PCR}(f) \le IL_{PCRmax}(f) = 0.5(0.0694 + 0.4248 \sqrt{f} + 0.9322f) (dB)
for 0.01 GHz \leq f \leq 19 GHz.
where
                  is the frequency in GHz
                  is the insertion loss for the transmitter and receiver PCB
  IL_{PCB}(f)
                  is the recommended maximum insertion loss for the transmitter and receiver PCB
 IL_{PCBmax}(f)
                                                                                                         PCB IL
    IL_{PCB}(f) \ge IL_{PCBmin}(f) = 0.086(0.0694 + 0.4248\sqrt{f} + 0.9322f) (dB)
 for 0.01 GHz \leq f \leq 19 GHz.
                                                                                                      Tx/Rx
                                                                                                      Function
 where
                    is the frequency in GHz
                    is the insertion loss for the transmitter and receiver PCB
   IL_{PCB}(f)
```

is the minimum insertion loss for the transmitter and receiver PCB

 $IL_{PCBmin}(f)$

IEEE 802.3bj/by/cd

Host Tx and Rx PCB losses

 Transmitter and receiver differential printed circuit board trace loss

GHz	dB/in
1	0.1856
6.5	0.8971
7	0.9557
12.89	1.5924 /
14	1.702

Attenuation* (dB/in) at:	1 GHz	6.5 GHz	7 GHz	12.89 GHz	14 GHz	GR F
Meg6_LowSR -Wide	0.0951	0.4159	0.4433	0.7562	0.8127	PROPO GRAPHS
Meg6_LowSR - Narrow	0.1466	0.5849	0.6205	1.0152	1.0847	_
Meg6_HighSR - Wide	0.1175	0.5960	0.6367	1.0891	1.1688	ON J
Meg6_HighSR - Narrow	0.1856	0.8971	0.9557	1.5924	1.7020	PA
ImpFR4_LowSR – Wide	0.1202	0.6096	0.6541	1.1772	1.2734	RAA
ImpFR4_LowSR - Narrow	0.1717	0.7794	0.8323	1.4410	1.5512	SIL
ImpFR4_HighSR -Wide	0.1427	0.7904	0.8484	1.5158	1.6367	TERS;
ImpFR4_HighSR - Narrow	0.2106	1.0930	1.1692	2.0283	2.1813	DE S
*using Algebraic Model v2.02a – see backup slides for values entered in Model						

Proposal for Defining Material Loss 26-Jan 12

Elizabeth Kochuparambil Joel Goergen

Cisco

http://www.ieee802.org/3/bj/public/jan12/kochuparambil_01a_0112.pdf

802.3bj Cu specifications

12

Transmitter and receiver differential PCB IL

IL @ 26.56 GHz

$$IL_{PCB}(f) \le IL_{PCBmax}(f) = 0.5(0.0694 + 0.4248 \sqrt{f} + 0.9322f)$$
 (dB)

IL @ 12.89 GHz = 6.81 dB

IL @ 13.28 GHz = 7.00 dB

IL @ 26.56 GHz = 13.51 dB

6.81

for 0.01 GHz $\leq f \leq$ 19 GHz.

PCB IL @ 12.89 GHz 1.5924 dB/in

4.27

ILpcb(max) | ILpcb(min) | inches (Max)

1.17

where

f is the frequency in GHz

 $IL_{PCB}(f)$ is the insertion loss for the transmitter and receiver PCB

 $IL_{PCBmax}(f)$ is the recommended maximum insertion loss for the transmitter and receiver PCB

$$IL_{PCB}(f) \ge IL_{PCBmin}(f) = 0.086(0.0694 + 0.4248 \sqrt{f} + 0.9322f)$$
 (dB)

for 0.01 GHz $\leq f \leq$ 19 GHz.

IL @ 12.89 GHz = 1.17 dB

GHz

12.89

where IL @ 13.28 GHz = 1.20 dB

IL @ 26.56 GHz = 2.32 dB

f is the frequency in GHz

 $IL_{PCB}(f)$ is the insertion loss for the transmitter and receiver PCB

 $IL_{PCBmin}(f)$ is the minimum insertion loss for the transmitter and receiver PCB

IL @
$$12.89 \text{ GHz} = \text{Max } 6.81 \text{ dB}$$

= Min 1.17 dB

inches (Min)

0.74

Host Channel

- Use transmitter and receiver differential printed circuit board trace loss max (with IL @ 26.56 GHz) slide 7.
- Note: The connector insertion loss is 1.5 dB for the mated test fixture. The host connector is allocated 0.5 dB for implementation allowance.

IL host connector @ 26.56 GHz = 11.5-7-2.5 = 2 dB

Figure 2: 100GEL CR TP0-TP2 insertion loss budget at 26.56 GHz

Cable assembly and Channel IL - Baseline

- Cable assembly Max IL dB @ 26.56 GHz= 10 (bulk cable) + (2*2.3) (TF) +(2*1.5) (connector) = 17.6 dB
- Cable assembly Min IL dB @ 26.56 GHz= 2.5 (bulk cable) + (2*2.3) (TF) +(2*1.5) (connector) = 10.1 dB
- Channel Max IL dB @ 26.56 GHz= 17.6 (Cable assembly) +2*11.5 (TP0-TP2)- (2*6.3) MTF = 28 dB
- Channel Min IL dB @ 26.56 GHz= 10.1 (Cable assembly) +2*11.5 (TP0-TP2)- (2*6.3) MTF = 20.5 dB
- Channel Max IL dB @26.56 GHz =10 (bulk cable)+(2*7) Host IL +(2*2) Host connector IL = 28 dB
- 10 (bulk cable) =17.6 (CA) (2*2.3) (TF) +(2*1.5) (connector)

802.3bj/by/cd - Test Fixture PCB IL

92.11.1.2 Test fixture insertion loss equation (92-34)

```
IL_{tfref}(f) = -0.00144 + 0.13824 \sqrt{f} + 0.06624 \ f (dB) for 0.01 \le f \le 25 GHz where f is the frequency in GHz IL_{tfref}(f) is the reference test fixture PCB insertion loss at frequency f
```

92.11.1.2 Test fixture insertion loss equation (92-34)

```
IL_{\text{catf}}(f) = -0.00125 + 0.12 \sqrt{f} + 0.0575 f (dB) for 0.01 \text{ GHz} \le f \le 25 \text{ GHz} where f is the frequency in GHz IL_{\text{catf}}(f) is the reference test fixture printed circuit board insertion loss at frequency f
```

TP0-TP3 test fixture IL - HCB

$$IL_{tfref}(f) = -0.00144 + 0.13824 \sqrt{f} + 0.06624 \ f$$
 (dB)
for $0.01 \le f \le 25 \ \text{GHz}$ IL @ 12.89 GHz = 1.35 dB
where IL @ 13.28 GHz = 1.38 dB
 f is the frequency in GHz IL @ 26.56 GHz = 2.47 dB
 $IL_{tfref}(f)$ is the reference test fixture PCB insertion loss at frequency f

ILtref(f)=1.013(-0.00144+0.13824*SQRT(26.56)+0.06624*26.56)=2.50 dB

NOTE—The connector insertion loss is 1.07 dB for the mated test fixture. The host connector is allocated 0.62 dB of additional margin.

 Note: The connector insertion loss is 1.5 dB for the mated test fixture. The host connector is allocated 0.5 dB for implementation allowance.

Cable assembly test fixture IL - MCB

$$IL_{\text{catf}}(f) = -0.00125 + 0.12\sqrt{f} + 0.0575f$$

(dB) TBD

IL @ 12.89 GHz = 1.17 dB

IL @ 13.28 GHz = 1.20 dB

IL @ 26.56 GHz = 2.14 dB

where

f is the frequen

for 0.01 GHz $\leq f \leq$ 25 GHz

f is the frequency in GHz

 $IL_{catf}(f)$ is the reference test fixture printed circuit board insertion loss at frequency f

ILcatf(f) = 1.073*(-0.00125+0.12*SQRT(26.56)+0.0575*26.56)=2.30 dB

NOTE—The connector insertion loss is 1.07 dB for the mated test fixture. The host connector is allocated 0.62 dB of additional margin.

Note: The connector insertion loss is 1.5 dB for the mated test fixture. The host connector is allocated 0.5 dB for implementation allowance.

Cable assembly test fixture reference IL

The reference insertion loss of the mated test fixture is determined using Equation (136B-1).

$$IL_{MatedTF}(f) = 0.471 \sqrt{f} + 0.1194 f + 0.002 f^2$$
 (dB)

for 0.01 GHz $\leq f \leq$ 25 GHz

В
65
01

(136B-1)

where

is the frequency in GHz

ILmatedTF(f)=0.899(0.471*SQRT(f)+0.1194*f+0.002*f^2)*

GHz	dB
26.56	6.3

IL @ 26.56 GHz

Note: The connector insertion loss is 1.5 dB for the mated test fixture. The host connector is allocated 0.5 dB for implementation allowance

IEEE 802.3ch Tx-Rx Channel Ad Hoc

Test Fixtures

 Test Fixture specifications – Adopt– referenced parameters 26.56 GHz f=0.01≤f≤40 (signaling rate 53.125 GBd).

Mated test fixtures parameters

Value	Unit
Equation(TBD)	dB
Equation(TBD)	dB
Equation (slide 22) TBD	dB
Equation(TBD)	dB
(TBD)	mV
	Equation(TBD) Equation (slide 22) TBD Equation(TBD) Equation(TBD) Equation(TBD) Equation(TBD) Equation(TBD) Equation(TBD)