

German Feyh

12/19/2018

Return loss and system complexity from Ahmad Chini and Hui Pan http://www.ieee802.org/3/bp/public/jan15/pan_3bp_01_0115.pdf

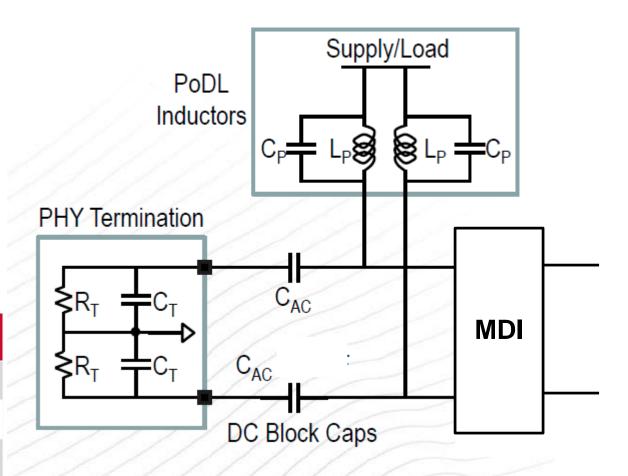
- Finite RL necessitates digital echo cancellation
 - Increased signal processing complexity
- Excessive echo reduces effective ADC dynamic range
 - Lower SNR and shorter cable reach
- High freq. echo amplifies jitter to noise conversion
 - Lower SNR and shorter cable reach
 - Slower timing recovery and longer startup
- Serial reflections cause system resonance
 - Degraded driver stability
 - More DM/CM conversions

Comparison to adopted MDI return loss mask by http://www.ieee802.org/3/ch/public/nov18/bhagwat_3ch_01a_1118.pdf

- To generate the MDI return loss mask, Bhagwat considers only the parasitic capacitance of the PoDL network.
- Additionally the ESD requirements have to be considered:
 - Chip handling, HBM (Human Body Model), CDM (charge device model)
- For an implementable system, MDI return loss mask should be relaxed:
 - At the lower frequency range to allow for smaller PoDL inductors.
 - High frequency range to allow for the parasitic capacitance of ESD protection diodes.

IEC 61000-4-2

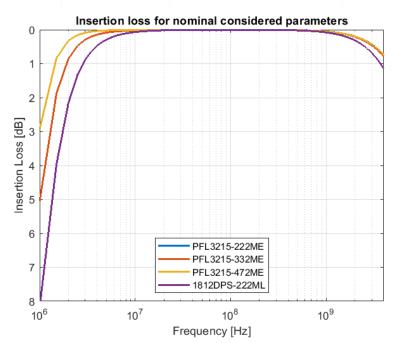
- IEEE standard specifications should not preclude that the device can pass other e.g. ESD protection standards.
- Assumption: for connectors using a metallic connector shell, direct application of discharges to the pins is excluded:
 - IEC 61000-4-2, paragraph 8.3.2 Direct application of discharges to the EUT
 - The following exclusions apply:
 - d) the contacts of coaxial and multi-pin connectors which are provided with a metallic connector shell. In this case, contact discharges shall only be applied to the metallic shell of these connectors.

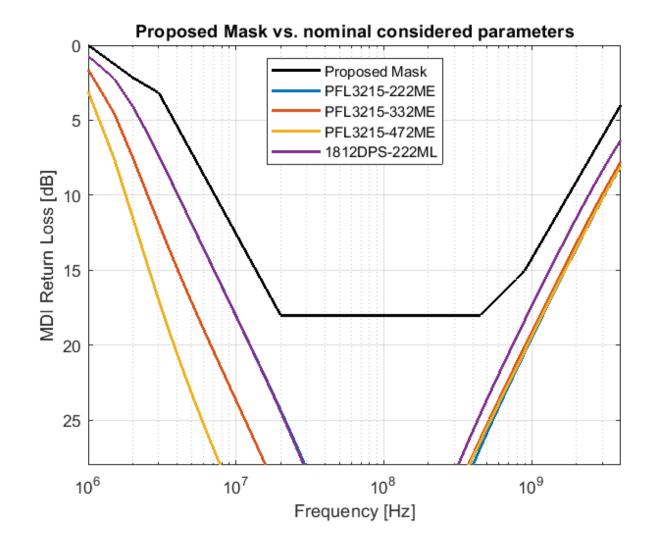


Considered topology and PoDL inductors

- 4 different available inductors
- Inductance lower than the 6.8uH inductance considered by bhagwat_3ch_01a_0918.pdf
- Parasitic capacitance computed from Self-Resonant Frequency

•
$$SRF = \frac{1}{2\pi\sqrt{CL}}$$


Part Number	Inductance [uH]	Self-Resonant Frequency [MHz]	Parasitic Capacitance [pF]
PFL3215-222ME	2.2	250	0.184
PFL3215-332ME	3.3	190	0.180
PFL3215-472ME	4.7	170	0.184
1812DPS-222ML	2.2	175	0.376



Single sided parasitic termination capacitance: Cterm 0.5pF to support HBM and CDM.

Part Number	Inductance [uH]	Self-Resonant Frequency [MHz]	Parasitic Capacitance [pF]
PFL3215-222ME	2.2	250	0.184
PFL3215-332ME	3.3	190	0.180
PFL3215-472ME	4.7	170	0.184
1812DPS-222ML	2.2	175	0.376

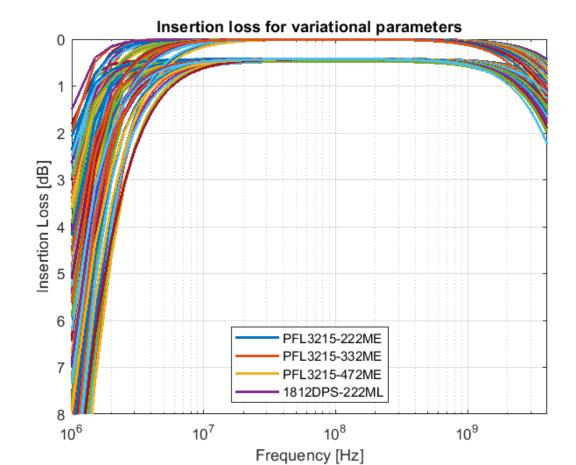
Mask in numerical form considering single sided parasitic termination capacitance Cterm=0.5pF

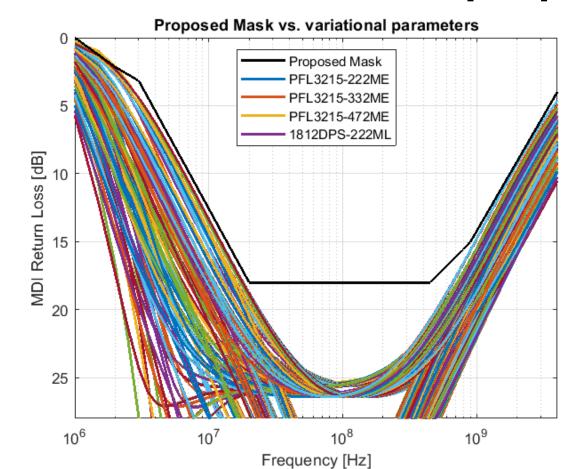
Return loss in dB, frequency in MHz

Parameter variation study

Part Number	Inductance [uH]	Self-Resonant Frequency [MHz]	Parasitic Capacitance [pF]
PFL3215-222ME	2.2	250	0.184
PFL3215-332ME	3.3	190	0.180
PFL3215-472ME	4.7	170	0.184
1812DPS-222ML	2.2	175	0.376

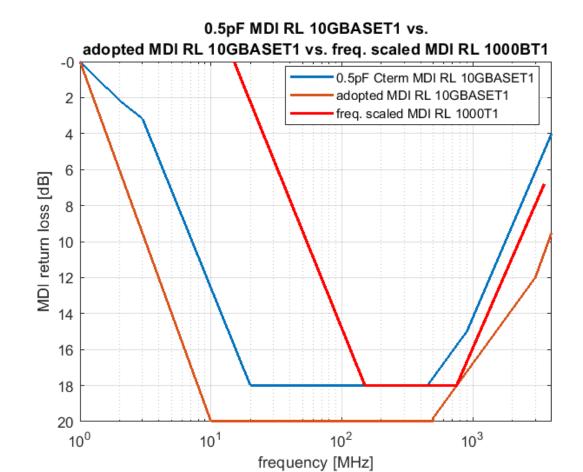
		min	nom	max
R_T	Ohm	45	50	55
C_T	pF	0.75	1.0	1.25
C_AC	nF	2.16	2.88	3.6
L_P	μΗ	75%	100%	125%
C_P	pF	75%	100%	125%

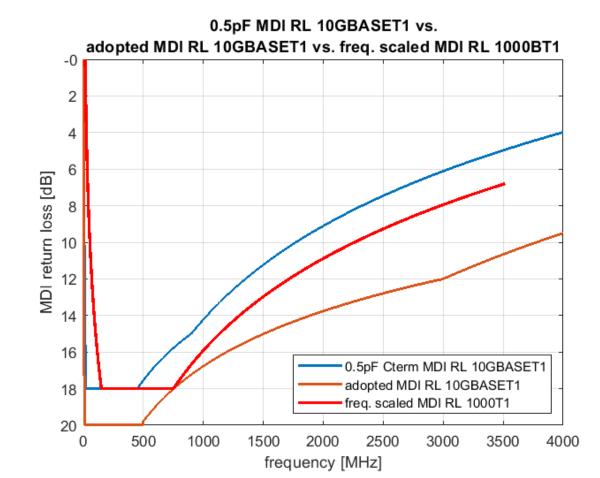

Parameter variation


- Low PoDL inductance sets low frequency behavior
- Termination resistor variation sets middle frequency behavior 20 ≤f<450 [MHz]
- Overall capacitance sets upper frequency behavior

450≤f<4000 [MHz]

f<20


[MHz]



Proposed MDI return loss mask in comparison

- Lower transition band: 1MHz to 20MHz
- Upper transition band: 450MHz to 4GHz

Conclusion

- Recommend to support both HBM and CDM requirements.
- Propose to change the MDI return loss mask to

Return loss in dB, frequency in MHz

