

AQUANTIA ACCELERATING CONNECTIVITY

802.3ch PCS + FEC Design

Dr. Paul Langner

Goal: Create a PCS+FEC that transports XGMII reliably across the desired channel in the presence of burst and Gaussian noise

Current Plan of Record:

RS1024 with a 9/8 symbol-rate bit-rate to bit-rate ratio, and some 2^mB2^m+1 transcoding (i.e. 64B65, 128B129, 256B257, 512B513)

Constraints:

- FEC + Interleaving must be designed to handle the worst case error burst and background
 Gaussian noise
- PCS structure should contain an integer number of XGMII frames
 - Referred to as transcoding
- Frame structure should be integrated with FEC so that an integer number of PCS frames are contained within a FEC frame so that the PCS frames can be delineated

FEC Constraints

- For PAM4 line-coding with a DFE at 10G, we need to be able to correct a 110ns burst every 100us, which translates into 1100 bits every 1,000,000 bits
- With a 9/8 rate, 10-bit symbols, and a we can write the relationship between the number of symbols in a RS frame (N) and the number of payload symbols (K) as:

$$N / K = 9(2^m) / 8(2^m + 1)$$

If we need to correct a burst of 124 symbols (9/8 x 110), which requires 248
check symbols (two check symbols can correct one errored symbol), we have a
second relationship between N and K as:

(#RS Frames in Superframe) x (N-K) >= 248

Combining these we get:

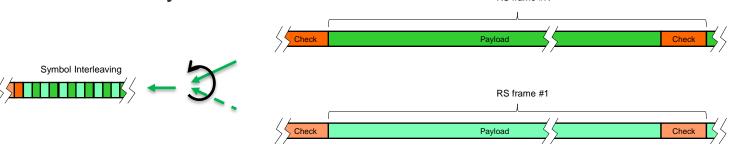
$$N \ge 248 / ((\#Frames in Superframe) x (1 - (8(2^m+1) / 9(2^m))))$$
 (1)

FEC Constraints (continued)

- Tabulating Eq. 1 for each transcoding type, shows the effect of PCS transcoding on the minimum frame size required to correct a 110ns
 - 10-bit symbol duration is 8/9 ns = 124 symbols, thus need 248 symbols to correct

Burst Length	Transcoding	g Superframe Duration (symbols)	
248	64B65	2551	2267
248	128B129	2381	2116
248	256B257	2304	2048
248	512B513	2267	2015

➤ All transcoders provide the same service and increasing the block size increases the efficiency


FEC Delay and Complexity

- In the Tx direction, there is no delay associated with RS, as it is systematic and the check symbols are calculated "on-the-fly" and sent at the end of an RS frame
- In the Rx direction, decoder delay is roughly the number of check symbols + the 2x frame duration
 - Decoding can't start until the last symbol in the frame is received, and checking can't end until
 the last symbol has been passed through the decoder (Chien search)
- Complexity of the RS decoder is proportional to:
 - The field size (ours is 1024)
 - The number of check symbols
- Examples of RS decoder sizes in current process node:

Code	Datapath width in 10- bit symbols	Number of gates	Std cell area / mm2		
528,514	4	126k	0.021		
544,514	4	204k	0.034		
576,514	4	444k	0.074		

Interleaving Delay

- If our channel is not Gaussian noise limited, we can achieve the same burst-error correcting capability by interleaving many smaller length decoders (all with the same effective 9/8 rate) to create a "Superframe"
 - However this adds fixed delay to the overall system

- In Tx direction, transmission cannot start until data for the last block starts, adding a delay of (N-1), where N is the amount of interleaving
- Similarly in the Rx direction, decoding cannot start until the last symbol of the first RS frame is received, which again adds (N-1) frame duration delay
- The result is that for xN interleaving, you add an additional delay of 2(N-1) frames

Interleaving Delay Versus N and Transcoding Type

 The following table shows the total delay at a 9/8 rate in RS1024 to deal with a 110ns burst (248 check symbols required) with different interleaving and different transcoding

		Transcode					Superframe				
Interleavi	ing	Blocks per			Required	Actual	Duration	Decode Delay	Interleave Delay	/ Total Delay	1
Depth	Transcoding	RS Frame	N	K	N-K	N-K	(symbols)	(ns)	(ns)	(ns)	~# kGates
3	64B65	120	864	780	83	84	2592	1625	3072	4697	602
4	64B65	90	648	585	62	63	2592	1222	3456	4678	451
5	64B65	80	576	520	50	56	2880	1088	4096	5184	401
6	64B65	60	432	390	42	42	2592	820	3840	4660	301
7	64B65	60	432	390	36	42	3024	820	4608	5428	301
8	64B65	50	360	325	31	35	2880	685	4480	5165	251
3	128B129	60	864	774	83	90	2592	1630	3072	4702	645
4	128B129	50	720	645	62	75	2880	1361	3840	5201	537
5	128B129	40	576	516	50	60	2880	1092	4096	5188	430
6	128B129	30	432	387	42	45	2592	822	3840	4662	322
3	256B257	30	864	771	83	93	2592	1633	3072	4705	666
4	256B257	20	576	514	62	62	2304	1093	3072	4165	444
4	512B513	10	576	513	62	63	2304	1094	3072	4166	451

Notes: Interleave depth x (N-K) >= 248

N,K chosen so there is an integer number of transcoding blocks per frame

4-symbol wide decoder with total delay = (2N+2T+16) *8/9

10-bit symbol duration = 8/9ns

Conclusions

- The optimal combination of complexity versus total delay appears to be around an RS1024 (576,514) with 256B257 transcoding or RS1024(576,513) with 512B513 transcoding
 - Transcoder complexity of 256B257 and 512B513 is essentially the same, and in the "noise" relative to the RS decoder complexity (both require ~4k gates)
- Since N-K in the RS1024(576,513) code is odd, it has the same error correction capability as RS1024(576,514)
- ➤ Consequently, the recommendation is to use RS1024(576,514) with 512B513 transcoding + 10-bit vendor reserved symbols per frame

