## NGAuto Channel Modeling and Analysis

Eric DiBiaso (TE Connectivity), Bert Bergner (TE Connectivity), Chris Mandel (TE Connectivity)

Supporters:

IEEE 802.3ch Multi-Gig Automotive Ethernet PHY Task Force March 5-8, 2018 – Plenary Meeting – Rosemont, IL, USA

### Motivation – Channel Modeling & Analysis

- Develop a channel model test bench to quickly and accurately emulate potential NGAuto use cases
- Provide link segment simulation results for previously shared topologies for comparison to currently adopted RL & IL limits
- Attempt to define performance limits for individual components

### Specific Topology to Analyze

- Implementation may contain 0,1, or 2 in-line connections
- Cable segments are 0.5m to 11.0m in total length
- May include sealed connectors



## Channel Model



### Cable Modeling Parameters



### **Connector Modeling Parameters**



Initial performance budget for both MDI and Inline Connectors

S-Parameters for Connectors in this simulation should be viewed as a static limit assumption

### Adopted RL Limits

### Group 10G: Return Loss Limit Line (Adjusted with IL)



(Max. 3 Segments, 11m)



#### **Cable A Parameters**

C1 = -2.5898e-5 C2 = -6.7924e-11 Vp = 2.16e8 Cable Imp:  $95\Omega$  to  $105\Omega$ 

#### **2** RL Violations

S11 @ 30MHz & 63.75MHz (<.5dB) S22 @ 30MHz (.3dB)

Causes:

Low – High – Low Cable Impedance

(Max. 3 Segments, 11m)



#### **Cable A Parameters**

C1 = -2.5898e-5 C2 = -6.7924e-11 Vp = 2.16e8 Cable Imp:  $95\Omega$  to  $105\Omega$ 

NO IL Violations since max cable length is 11m

(Max. 3 Segments, 11m)



#### **Cable B Parameters**

C1 = -1.97042e-5 C2 = -2.31881e-10 Vp = 2.16e8 Cable Imp:  $95\Omega$  to  $105\Omega$ 

#### **3** Iterations with RL Violations

S11 @ 26.25, 33.75, & 120MHz (<.5dB) S22 @ 26.25, 33.75, 120, 210MHz (<.3dB)

Causes:

Low – High – Low Cable Impedance

Cable Len (m) 2.27 4.85 1.24 Cable Imp ( $\Omega$ ) 95.5 104.76 95.84



#### **Cable B Parameters**

C1 = -1.97042e-5 C2 = -2.31881e-10 Vp = 2.16e8 Cable Imp:  $95\Omega$  to  $105\Omega$ 

NO IL Violations since max cable length is 11m

(Max. 3 Segments, 11m)



#### **Cable B Parameters**

C1 = -1.97042e-5 C2 = -2.31881e-10 Vp = 2.16e8 Cable Imp:  $96\Omega$  to  $104\Omega$ 

3 RL Violations All instances have IL @ 3GHz over 20dB requiring best Limit line. (This doesn't occur with C2 value from Cable A)

Example of RL Violation (3 segments) Cable Len (m) .9545 6.94 3.0652Cable Imp ( $\Omega$ ) 99.2 99.7 99.99

Total Cable Length = 10.96m

### Topology Set 1 – Worst Case Example



### Max. 15m x 4 inlines – Random - 1000 Iterations



Cable B Parameters

C1 = -1.97042e-5 C2 = -2.31881e-10 Vp = 2.16e8 Cable Imp:  $96\Omega$  to  $104\Omega$ 

**128 Iterations with RL Violations** All of the 128 except 1 had a total Cable Length > 10.9m... (IL@3GHz > 20dB)

 1 exception had 4 segments and Length of 9.3551m.

### Max. 15m x 4 inlines – Worst Case Example



### Max. 15m x 4 inlines – Random - 1000 Iterations



**Cable B Parameters** 

C1 = -1.97042e-5 C2 = -2.31881e-10 Vp = 2.16e8 Cable Imp:  $96\Omega$  to  $104\Omega$ 

**O** IL Violations

IL Limit is Good!!! Gives margin for additional variations of C2

### Max. 15m x 4 inlines – Random - 1000 Iterations (no Connectors)



3.3

2.9

## Conclusions

- Simulation Model developed demonstrates some RL limit violations at longer link lengths using 26AWG cables
  - 2 Different topologies were investigated with 1000 random variations
- Cable Parameters
  - 5% Impedance mismatch could lead to RL violations at low frequencies
  - 3% Impedance mismatch would eliminate these RL violations
  - 5% Impedance tolerance might be acceptable if 6 Ohm segment to segment mismatch is guaranteed
  - Variations in cable C2 coefficient could lead to RL violations since IL@3GHz > 20dB
- Connector model used in these simulations serves well as worst case assumption for fulfilling proposed channel limits

### Proposed Next Steps

- Analyze different topologies suggested from other OEMs
- Get input from cable/connector manufactures on realistic component limits
- Should relaxed RL/IL limits be investigated for 2.5Gbit or 5Gbit links?
- Investigate Mode Conversion
  - Current simulations will not work for mode conversion

# Thank You!!!