# Channel Selection Tradeoffs for Automotive 2.5G/5.0G/10Gbps

Ramin Farjadrad SVP of R&D March 2018, Chicago

# **Supporters**

- Olaf Grau(Bosch)
- Christoph Wechsler (Audi)
- Olaf Krieger (Volkswagen)
- Keld Lange (Porsche)
- Stefan Buntz (Diamler)
- Hideki Goto (Toyota)
- Thomas Hogenmueller (Bosch)
- Helge Zinner (Continental)
- Natalie Wienckowski (GM)
- George Zimmerman (CME/AQ)



#### **Overview**

This presentation studies the minimum cable bandwidth requirements for 2.5G/5.0G/10Gbps Automotive Ethernet PHY

- First part discusses the tradeoffs of channel excess BW and PHY complexity
- Second part discusses what is the maximum cable BW that is required for 10Gbps PHY



## Channel BW Requirement and PHY Complexity

- The absolute minimum required channel BW for a PHY to successfully transmit a baseband signal is half signal baud rate or Nyquist frequency  $(f_{Nyq})$
- Although power spectrum of a baseband signal always stretches beyond its  $f_{Nva}$ 
  - Therefore, for successful transmission, the signal power in Nyquist excess
    BW must be properly characterized or adequately suppressed
  - if channels are specified only up to  $f_{Nyq}$ , PHY needs additional complexity to adequately suppress any signal power above  $f_{Nyq}$ .
  - Extending channel limit lines to cover excess BW above  $f_{Nyq}$  of a signaling scheme allows PHYs to reduce complexity
- ➔ The tradeoffs between PHY complexity and cabling BW must be carefully considered in specifying channel requirements



## Signal Beyond Defined Channel BW

- Links with smooth/well-behaved channel response up to  $1.25 x f_{Nyq}$  can simplify PHYs receiver signal processing complexity
  - Idea Tx pulse with zero rise/fall time  $\rightarrow$  Signal Power ( $f > 1.25 \times f_{Nvq}$ ) = ~11%
  - Typical Tx pulse with  $T_{sym}/2$  rise/fall time  $\rightarrow$  Signal Power ( $f > 1.25 \times f_{Nyq}$ ) =  $\sim 7\%$
- Signal power >  $f_{Nva}$  can be further reduced by PHY Tx pulse shaping
  - Tx pulse shaped with  $T_{sym}$  rise/fall time  $\rightarrow$  Signal Power ( $f > 1.25 x f_{Nyq}$ ) < 3%





5

## How Much Excess BW is Enough?

- Signal power >  $f_{Nva}$  can also be reduced by adding PHY receiver filtering
  - Tx pulse shaped with  $T_{sym}$  rise/fall time  $\rightarrow$  Signal Power ( $f > 1.25 x f_{Nyq}$ ) < 3%
  - Tx pulse shaped with  $T_{sym}$  rise/fall time  $\rightarrow$  Signal Power ( $f > 1.10 x f_{Nyq}$ ) = ~7%
- An additional 1st-order LP filter relaxes excess BW requirement from  $25\% \rightarrow 10\%$ 
  - Tx pulse with  $T_{sym}$  rise/fall & LP filter  $\rightarrow$  Signal Power ( $f > 1.10 x f_{Nyq}$ ) < 3%
- → With moderate complexity, pulse shaping/filtering, PHYs can be designed to reliably operate over channels defined only up to 10% excess BW



# **Channel Insertion Loss Target**



Insertion Loss [-dB] - 4 Different Topologies

Bergner & DiBiaso, IEEE Sept. 11 2017 (DiBiaso\_3ch\_01a\_0917)

- DiBiaso-Bergner Channel A plus 105C temperature effect (~20% higher IL) was originally considered as the worst channel in our analysis
- The new channel model closely matches DiBiaso Channel A, but without temperature effect
- Temperature effect adds about 4-5dB (at 3GHz) to cable loss
- For cables to meet new IL limit line over temperature, their gauge & dielectric quality must improve
- Higher BW Cables/Connectors Lead to Higher Cost of Cabling, thus Total Solution Cost

What's relative cost between the two?

Limit Line for DiBiaso-Bergner cable

## **Insertion Loss Limit Line Update**



- Difference Summary
  - IL relaxed by 4dB@3GHz
  - Top Freq. extended to 5.5GHz
  - The IL limit line is also defined for data rates of 2.5Gbps-10Gbps, while such IL limit is a total overkill for 2.5Gbps, and even 5Gbps
    - Creates a totally unnecessary requirement for 2.5G/5G cables that only adds to the cabling costs
  - Cost difference between 3GHz and 5.5GHZ cables is not clear yet (no data presented)
    - At minimum all certification/qualification devices/equipment must be upgraded from existing 3GHz to 8GHz



## Mature Automotive Cabling in Volume Production





•Existing automotive cable assemblies in production and installed in large volume show solid performance up to BWs 3GHz-3.2GHz

- •These cables are more mature with lower cost compared to newer cables with 5.5GHz bandwidth requirement
- •If PHY can transmit net data rate of 10Gbps over these cables under 3GHz, we can define one IL/RL limit line for 2.5G-10Gbps that most existing 3GHz cable assemblies can meet





#### Salz SNR Analysis over DiBiaso Channel A@105C: 2.5G/5G/10Gbps

| 2.5Gbps                                 | PAM2  | PAM4  | PAM8  |
|-----------------------------------------|-------|-------|-------|
| Baud rate (10% FEC Overhead)<br>[GBaud] | 2.75  | 1.38  | 0.92  |
| Nyquist BW (FEC Overhead) [GHz]         | 1.38  | 0.69  | 0.46  |
| 10% Excess BW [GHz]                     | 1.52  | 0.76  | 0.51  |
| IL @Nyquist [dB]                        | 20.97 | 13.61 | 10.77 |
| Ideal Salz SNR margin [dB]              | 28.16 | 24.25 | 19.06 |

| 5.0Gbps                                 | PAM2  | PAM4  | PAM8  |
|-----------------------------------------|-------|-------|-------|
| Baud rate (10% FEC Overhead)<br>[GBaud] | 5.50  | 2.75  | 1.83  |
| Nyquist BW (FEC Overhead) [GHz]         | 2.75  | 1.38  | 0.92  |
| 10% Excess BW [GHz]                     | 3.02  | 1.52  | 1.01  |
| IL @Nyquist [dB]                        | 32.73 | 20.97 | 16.12 |
| Ideal Salz SNR margin [dB]              | 19.83 | 18.94 | 15.02 |

| 10Gbps                                  | PAM2 | PAM3  | PAM4  | DSQ32 | PAM8  |
|-----------------------------------------|------|-------|-------|-------|-------|
| Baud rate (10% FEC Overhead)<br>[GBaud] | 11.0 | 1.74  | 5.50  | 4.40  | 3.67  |
| Nyquist BW (FEC Overhead) [GHz]         | 5.50 | 3.67  | 2.75  | 2.2   | 1.83  |
| 10% Excess BW [GHz]                     | 6.04 | 4.04  | 3.02  | 2.42  | 2.01  |
| IL @Nyquist [dB]                        | 63.8 | 47.84 | 32.73 | 27.82 | 24.89 |
| Ideal Salz SNR margin [dB]              | 9.3  | 11.45 | 10.78 | 9.42  | 8.52  |

- Ideal Salz SNR margin → Received SNR assuming ideal PHY or no Alien/RF Interference
- AWGN: -150dBm/Hz, Tx Amplitude: 1.0V+/-10%
- Assuming PHY additional filter to suppress signal power beyond 10% Excess BW:
  - $\rightarrow$  2.5Gbps & 5.0Gbps don't need cables with BW>3GHz
  - → 10Gbps in PAM4 and possibly other higher-level PAMs (with  $f_{Nyq}$ +10% within 3GHz) operate with reasonable SNR margin to overcome unaccounted noise sources



#### Salz SNR Analysis over 802.3 d0.2.1 Limit Line: 2.5G/5G/10Gbps

| 2.5Gbps                                 | PAM2  | PAM4  | PAM8  |
|-----------------------------------------|-------|-------|-------|
| Baud rate (10% FEC Overhead)<br>[GBaud] | 2.75  | 1.38  | 0.92  |
| Nyquist BW (FEC Overhead) [GHz]         | 1.38  | 0.69  | 0.46  |
| 10% Excess BW [GHz]                     | 1.52  | 0.76  | 0.51  |
| IL @Nyquist [dB]                        | 19.00 | 12.58 | 9.96  |
| Ideal Salz SNR margin [dB]              | 31.49 | 26.62 | 20.46 |

| 5.0Gbps                                 | PAM2  | PAM4  | PAM8  |
|-----------------------------------------|-------|-------|-------|
| Baud rate (10% FEC Overhead)<br>[GBaud] | 5.50  | 2.75  | 1.83  |
| Nyquist BW (FEC Overhead) [GHz]         | 2.75  | 1.38  | 0.92  |
| 10% Excess BW [GHz]                     | 3.02  | 1.52  | 1.01  |
| IL @Nyquist [dB]                        | 29.23 | 19.00 | 14.89 |
| Ideal Salz SNR margin [dB]              | 21.80 | 20.23 | 16.22 |

| 10Gbps                               | PAM2  | PAM3  | PAM4  | DSQ32 | PAM8  |
|--------------------------------------|-------|-------|-------|-------|-------|
| Baud rate (10% FEC Overhead) [GBaud] | 11.0  | 1.74  | 5.50  | 4.40  | 3.67  |
| Nyquist BW (FEC Overhead) [GHz]      | 5.50  | 3.67  | 2.75  | 2.2   | 1.83  |
| 10% Excess BW [GHz]                  | 6.04  | 4.04  | 3.02  | 2.42  | 2.01  |
| IL @Nyquist [dB]                     | 46.16 | 35.24 | 29.23 | 25.36 | 22.64 |
| Ideal Salz SNR margin [dB]           | 14.42 | 14.68 | 12.62 | 10.95 | 9.97  |

- Similar analysis with 802.3 d0.2.1 IL limit line for PAM4 and higher modulations (with f<sub>Nyq</sub>+10% within 3GHz) show even higher SNR margin for 10Gbps
- PAM3/PAM2 schemes with  $f_{Nyq}$  >3GHz excluding existing cabling minimally improves an already strong SNR margin
- Alternative is to use relaxed 802.3 d0.2.1 IL limit line up to 3GHz, which simply means using lower loss (lower gauge) cables but stay with existing cable/connector technology



# Conclusion

- $f_{Nvq}$  is absolute minimum frequency range to define channel specs
  - Defining channel specs over 25% excess BW is preferred but not necessary, since PHYs can utilize additional filters to operate over channels specified only up to  $f_{Nvq}$ .
  - Defining channel specs over 10% excess BW reduces the PHY complexity for required filtering
- The latest proposed channel limits uses max frequency of 5.5GHz, disqualifying most (if not all) existing 3GHz automotive cables
  - 3GHz cables provide more than enough BW for 2.5Gbps/5.0Gbps and have enough BW for 10Gbps robust transmission at PAM4 and higher modulations
  - There are no technical reasons presented yet that dictate higher than 3GHz BW requirement, which lead to higher costs of cabling, and thus higher cost of final system.
- Recommendation: Define the cable BW to up to 3GHz. This BW is enough for all PHY speeds from 2.5Gbps to 10Gbps, and minimizes the total system cost.



## **Recommended Insertion Loss Limit Line**



 Keep the same limit line equations as agreed upon per Geneva meeting, but change the maximum bandwidth to 3GHz

Insertion.Loss(dB)  $\leq 0.0030^*f + 0.40^*\sqrt{f}$ 

5MHz<f<3000MHz (Frequency in MHz)



#### **Recommended Return Loss Limit Line**





- $IL_{3GHz} > 20dB$   $\rightarrow$  N=0
- 10dB< IL<sub>3GHz</sub> < 20dB  $\rightarrow$  N=1
- $IL_{3GHz} < 10dB$   $\rightarrow$  N=2

 $\rm L_{3GHz} \rightarrow Channel \ IL \ at \ 3GHz$ 





## **Examples of Mature Automotive Cabling in Production**



16