802.3CH ACHIEVABLE DATA RATES

Rosemont, March 7-8th 2018

Conrad Zerna

802.3ch NGAUTO Objective

- Simulate achievable data rates on
 - current baselines of Insertion Loss and Return Loss
 - Assumption on coupling attenuation
- Compare maximum baseline IL with ILs found in DiBiaso_3ch_01_0318.pdf in 11m segment defined in wienckowski_3ch_01a_022118.pdf

802.3ch NGAUTO Input Data – Return Loss

Baseline as adopted in Geneva January Meeting

N = 0, green curve taken

802.3ch NGAUTO Input Data – Insertion Loss

802.3ch NGAUTO Input Data – Insertion Loss

topologies with 3 segments and 11m max as defined in wienckowski_3ch _01a_022118.pdf

Harness simulation as in DiBiaso_3ch_01_ 0318.pdf slide 9 (cable A) and slide 11 (cable B) enables new IL limit lines

802.3ch NGAUTO Input Data – Insertion Loss

- IL_baseline <= 0.003 * f + 0.4 * sqrt(f)
- IL_11m_CableB <= 0.0021 * f + 0.32 * sqrt(f)
- IL_11m_CableA <= 0.0017 * f + 0.28 * sqrt(f)
- f in MHz
- Curves keep 3-4dB margin at high frequencies to simulation results in DiBiaso_3ch_01_ 0318.pdf

802.3ch NGAUTO Input Data – Assumption on Coupling Attenuation

802.3ch NGAUTO

Input Data – Assumption on Analysis

- Full-duplex communication
- Limited ENOB available (CMOS implementation of ADC and oscillator)
- Limited effectivness of echo cancellation (25dB)
- Transmit power limited
 - Emission considerations
 - CMOS and low power considerations
 - Full-duplex operation
- Thermal noise + noise factor
- Automotive alien crosstalk

802.3ch NGAUTO Results Overview

- Analysis gives
 - Maximum achievable data rate for given input conditions
 - Maximum usable frequency
- Several implementation non-idealities included
 - But not all ... there is some margin needed
- Absolute values change with inputs/assumptions, but comparison/trend will hold

	IL_baseline	IL_11m_cableB	IL_11m_cableA
IL @ 3GHz [dB]	-30.6	-23.6	-20.2
Data rate [Gbps]	9.2	11.5	13.05
Used BW [GHz]	2.2	2.95	3.4

802.3ch NGAUTO Achievable Data Rates - Conclusion

- → Baseline IL limit will likely demand a very laborious PHY implementation
- New IL limits from new link topology definition would enable significantly higher data rate or much more economic PHY implementation
- \rightarrow cableB at 11m would still be a quite challenging PHY implementation
- → Thicker gauges could produce same IL at lengths above 11m
- → Coupling attenuation is just an assumption, not a baseline ...

