

A Proposed Specification for Master Transmit Jitter in 802.3ch

Ramin Farjadrad Aquantia Corp.

Transmit Jitter Requirement for Multi-Gbaud BASE-T

- Earlier BASE-T PHYs always ran sub 1GBaud, so Jitter components (RMS, Deterministic, Even-Odd) were either a none issue and/or could easily be met
 - Symbols times were <1ns \rightarrow Help relax the RMS requirement
 - Transmitter could easily be clocked at baud rate frequency → No Even-Odd & Minimal Deterministic

- 10GBASE-T1 operating PAM4 at 5.6GBaud:
 - Symbols times are <200ps
 - Transmitter cannot easily be clocked at baud rate frequency → Even-Odd & Deterministic Jitter
 - \rightarrow All Jitter components start to be important and need to be specified

Existing 802.3 PAM4 Standard Specifications

- There are already different 802.3 standards that define PHY specification with PAM4 signaling at Multi-Gbaud rates
 - 802.3bj defines specifications for 25Gbps PAM4 signaling at 13.25GBaud
 - 802.3cd defines specifications for 50Gbps PAM4 signaling at 26.5GBaud

- We can adopt the transmit jitter specification of either of the PAM4 Multi-Gbaud standards.
 - Select 802.3bj-KP4:
 - Simpler jitter test setup and closer in baud rates to 10GBASE-T1
 - Can refer to the same standard in future for potentially 25GBASE-T1 as well

Proposed Transmitter Jitter Specifications

- Defining specs for three main Tx jitter parameters:
 - Random RMS (RJ_{RMS}), Deterministic (DJ), Even-Odd Jitter (EOJ)

- Jitter Test pattern: JP03A
 - The JP03A test pattern is generated prior to PAM4 encoding. When the JP03A test pattern is enabled, it replaces the signal from the precoder. The JP03A test pattern is a repeating {0,3} sequence.
- Jitter Test pattern: JP03B
 - The JP03B test pattern is generated prior to PAM4 encoding. When the JP03B test pattern is enabled, it replaces the signal from the precoder. The JP03B test pattern is a repeating sequence of {0,3} repeated 15 times followed by {3,0} repeated 16 times. Total length of the pattern is 62 symbols as follows:

Proposed RJ_{RMS} & DJ Master Tx Measurement Procedure

- Use the following procedure for RJ_{RMS} & DJ jitter measurement:
 - 1. Transmit JP03A pattern continuously
 - Using a CDR with a corner frequency of X and a slope of 20dB/decade, capture the zero-crossing times, T_{ZC}(*i*), of N symbols with N > 10⁷ (10G: X =1MHz, 5G: X =0.5MHz, 2.5G: X =0.25MHz)
 - 3. Determine the average pulse width T_{Avg} : $T_{Avg} = \frac{T_{ZC}(N) T_{ZC}(1)}{N-1}$
 - 4. Determine the jitter series, $\tau(j)$, j=2 to N: $\tau(j) = T_{ZC}(j) (j-1) \cdot \Delta T_{Avg} T_{ZC}(1)$
 - 5. Create a Cumulative Density Function (CDF) of $\tau(j)$.
 - 6. Calculate J5 as the difference between CDF of $\tau(j)$ at the $(1-0.5 \times 10^{-5})$ and 0.5×10^{-5} .
 - 7. Calculate J6 as the difference between CDF of $\tau(j)$ at the $(1-0.5\times10^{-6})$ and 0.5×10^{-6} .
 - → $RJ_{RMS} = 1.0538 \times (J6-J5)$ → $DJ = J5 9.3098 \times (J6-J5)$

Proposed EOJ Master Tx Measurement Procedure

- Use the following procedure for Even-Odd jitter measurement:
 - 1. Transmit JP03B pattern continuously
 - 2. Capture the time for 60 consecutive zero-crossing transitions with averaging to reduce noise/jitter effects
 - 3. Determine the average zero-crossing times, $T_{ZC}(i)$ with i= 1 to 60, where i=1 designates the transition from 3 to 0 after the consecutive pair of symbols {3,3}.
 - 4. The set of 40 pulse widths, $\Delta T(j)$, isolated from the double-width pulses are determined by

$$\Delta T(j) = \begin{cases} T_{ZC}(j+10) - T_{ZC}(j+9) & 1 \le j \le 20 \\ T_{ZC}(j+19) - T_{ZC}(j+18) & 21 \le j \le 40 \end{cases}$$

→ Even-Odd Jitter =
$$\frac{\sum_{j=1}^{20} \Delta T(2 \cdot j) - \sum_{j=1}^{20} \Delta T(2 \cdot j - 1)}{40}$$

802.3ch Proposed RJ_{RMS}, DJ, EOJ Master Tx Jitter Specifications

- Define jitter values, measured according to the specified procedures, relative to the symbol period so they are independent of baud rate
- Proposed Master Transmit jitter specification targets:
 - $RJ_{RMS} = 0.005UI$
 - DJ = 0.05UI
 - EOJ = 0.02UI

