Low Power Data

Hossein Sedarat

March 2019

ΕΤΗΞΖΝΟΥΙΔ

1

Interest in Low Power Data Mode

From 802.3ch meeting on 1/19:

• Straw Poll #5: Should the Task Force investigate asymmetric framework with the goal of having the feature scoped out in March:

Yes: 20 No: 6

• Straw Poll #6: If the asymmetric framework added x months to the P802.3ch timeline would you support it?

x = 9: 2 x = 3: 15 x = 6: 7

=> A lot of interest as long as the spec comes together quickly

Prior Contributions

- Current active discussion on PCS:
 - <u>http://www.ieee802.org/3/ch/public/jan19/Lo_3ch_01_0119.pdf</u>
 - <u>http://www.ieee802.org/3/ch/public/nov18/souvignier_3ch_02_1118.pdf</u>
- Some ideas on PMA:
 - <u>http://www.ieee802.org/3/ch/public/adhoc/Lo_3ch_01_adhoc_0219.pdf</u>
 - <u>http://www.ieee802.org/3/ch/public/jul18/souvignier_3ch_01a_0718.pdf</u>

Outline

To propose a PMA frame-work for low data-rate mode

- 1. That can coexists with nominal rate on opposite direction
- 2. That consumes low power
- 3. For a quick consensus, reuses as much as what is already debated and defined in the current draft
 - Modulation
 - Baud-rate, bandwidth and PSD
 - Precoding
 - Bit-mapping
 - FEC: Reed-Solomon code
 - Frame structure
 - Timing recovery

EEE for Low Power Data Mode

- EEE frame-work is well-suited low-power data mode:
 - Asymmetric operation
 - A low-power mode
 - Signaling is already debated and is almost finalized
 - Bonus: seamless transition between normal data mode and low-power mode

ΕΤΗΞΧΝΟVΙΔ

Low-Power Idle (LPI)

- During LPI, the transmitter is mostly quiet but periodically sends a short *Refresh* training signal so that the link-partners remain synchronized and are able to track variations in channel and noise
- LPI is terminated and normal data mode starts with *Alert* followed by *Wake* frames

Low-Power Data (LPD)

- A new ordered set or control character at XGMII interface signals the transition to Low-Power Data (LPD) mode
- LPD is similar to LPI, except every N cycles of Q-R, a new Special signal replaces Refresh
 - The Quiet time that follows the special signal is shortened to preserve the Q-R period
- Alert detection may not be needed

'HESNO'

Special LPD Signal

- Begins with 1 or more Refresh for quick training
- Followed by 0 or more Wake for graceful transition to data
- Ends with 1 or more RS data frames (using normal transmit functions: RS code, scrambler, precoding, PAM4, etc.)

Resisting Noncritical Innovations!

- It is possible to send data with PAM2 modulation
 - It may shorten the training time (Refresh)

It doubles the data transmission time

Have to spend time to figure out how to do data over PAM2

- ⇒ Use PAM4 modulation for data
- It is possible to design a new RS code for a shorter data frame
 It may help with latency

©Overhead of turning on/off data-path may have negative power impact

Have to spend time to figure out how to construct shorter code and frame

ightarrow Use integer multiples of RS data frame

ETHERNOVIA

Data Rate and Power

• The data rate in fast (R_h) and slow (R_l) directions are related as

$$R_l = \frac{N_d}{N_p \times N} R_h$$

• The power in slow mode (P_l) may be roughly expressed in terms of the corresponding power in fast (P_h) and EEE (P_e) and Alert Detection (P_a) modes as

$$P_{l} \approx \left(1 + \frac{N_{w} + N_{r} - 1}{N_{d}}\right) \frac{R_{l}}{R_{h}} P_{h} + \frac{96}{N_{p}} (P_{e} - P_{a})$$

$$Overhead due to Wake and longer Refresh$$

ΕΤΗΞ ΝΟ Ν

Example

Choose
$$N_r = 1$$
, $N_w = 0$,
resulting in

$$P_l = \frac{R_l}{R_h} P_h + \frac{96}{N_p} \left(P_e - P_a \right)$$

R _h	R _I	N _p	N	N _d
10 G	100 M	100	1	1
5 G	100 M	100	1	2
2.5 G	100 M	100	1	4
10 G	100 M	80	5	4
5 G	100 M	80	5	8
2.5 G	100 M	80	5	16
10 G	10 M	80	25	2
5 G	10 M	80	25	4
2.5 G	10 M	80	25	8

ETHERNOVIA

What about OAM?

- OAM may be loaded on either or all of Refresh, Wake and Data frames
- It is beneficial if Refresh and Wake are skipped so that they remain completely known signal

>> Use data frames to carry OAM messages during LPD

ETHERNOVIΔ

LPD Proposal

- LPD is proposed as a simple frame-work, based on EEE, to support low data-rate at low power
- Reuses mostly what is already debated and defined in the spec
 - Least impact on the timeline of the task force

LPD data-rate: $R_l = 100 Mbps$

$$N_p = 80, N_r = 1, N_w = 0$$

ETHERNOVIN

R _h	N	N _d	P ₁
10 G	5	4	$0.01P_h + 1.2(P_e - P_a)$
5 G	5	8	$0.02P_h + 1.2(P_e - P_a)$
2.5 G	5	16	$0.04P_h + 1.2(P_e - P_a)$