

Channel Requirements for Optimum/Robust PHY Design Beyond 1000BASE-T1

Ramin Farjadrad Aquantia Corp. 11/3/2017

Baud Rate/Modulation and Emission Concerns

- 1000BASE-T1 modulation selection was not derived by optimum system SNR
- 1000BASE-T1 chose UTP cables as target medium
 - Lack of cable shielding leads to radiated emission violations
- In order to meet emission specs standard committee considered lower baud rates combined with Tx-filtered PAM3 modulation to pass Tx PSD limit line for UTP
- Higher baud rates have proportionally lower PSD levels at a fixed Tx swing
 - Helps meet the target UTP Tx PSD mask

Baud Rate/Modulation and Emission Concerns

- Additionally, STP cables provide notable shielding attenuation compared to UTP
 - Eliminates Tx emission as a limiting factor for baud rate and/or PAM level selection
 - Modulation selection should be based on best SNR per channel characteristics
 Screening attenuation

AQUANT

3

• Also the Committee should define shielding/coupling limit line specs (absolute voltage on the line)

- Shield proper ground termination plays a major role

Echo Cancellation and Channel Excess BW

• There is a fairly strong transmit power beyond Nyquist frequency, even with proper pulse shaping

Tx Power	Red	Yellow	Green
$(f_{Nyq} \rightarrow \text{Infinite})\text{dB} - (0 \rightarrow f_{Nyq})\text{dB}$	-5.5dB	-7.5dB	-7.9dB

Assuming fixed transmit amplitude

Green Pulse Tx Power	K=100%	K=50%	K=25%
$(f_{Nyq} \rightarrow K.f_{Nyq})dB - (0 \rightarrow f_{Nyq})dB$	-8.0dB	-8.5dB	-10dB

K: Excess Bandwidth

 Tx power beyond f_{Nyq} can be stronger than received signal 10Gbps with PAM8 over DiBiaso/TE channel (IL=~35dB@3GHz)

 \rightarrow Received Signal Power= <u>~11dB</u> (Below Tx Power)

 \rightarrow Rx Power < Tx Power in excess BW (even for Green Pulse)

- Echo power can be comparable to Rx power in channels with very low return loss (RL) above f_{Nyq}

Echo Cancellation and Channel Excess BW

Echo Cancellation and Channel Excess BW

• Given the considerable transmit power above f_{Nyq} , channel response with excess BW beyond Nyquist is necessary in the full-duplex PHY design for proper echo cancellation analysis

→Minimum: 25% Excess BW (Covers ~94% of Tx power)

→ Preferred: 50% Excess BW (Covers ~98% of Tx power)

 This does not dictate the target channel to behave well above f_{Nyq}, but the channel limit lines should be specified for higher frequencies for a robust PHY designed to worst case

The higher the PAM levels, the higher the accuracy requirements for echo calculation/cancellation

→PAM8-PAM16 may need 50% Excess BW

 \rightarrow PAM2 (highest baud) should be fine with 25% Excess BW

Coding Overhead

- Major coding overhead is defined by choice of FEC
 - 1000BASE-T1 selected a RS-FEC with 10% overhead
 - FEC choice for 2.5Gbps-10Gbps data rates
 - Negative: Less SNR margin due to higher cable loss and/or higher PAM levels
 - Positive: The cable will be shielded, thus less alien interference coupled to signal
 - → FEC overhead of 10% should still be a good rough estimation
- Ethernet coding adds additional (minor) overhead
 - − Coding: 64/65 to 512/513 \rightarrow Worst case overhead: 1.55%
- Need to consider ~11.5% of coding overhead

Bandwidth Requirements for Channel Limit Lines

- A proper DSP analysis should consider all possible modulations to arrive at most robust PHY design
- Therefore, the following bandwidths are recommended for measurements and spec limit lines

Bandwidth requirement = (Baud@PAM2)/2 * (1+Excess BW) * (1+Coding Overhead)

- 2.5Gbps BW Requirement→ 1.25GHz x 1.25 x 1.115 = 1.75GHz
- 5.0Gbps BW Requirement → 2.5GHz x 1.25 x 1.115 = 3.5GHz
- 10.0Gbps BW Requirement → 5.0GHz x 1.25 x 1.115 = 7.0GHz

Conclusion

- The target channels for higher rates than 1000BASE-T1 are shield cables
 - There will not be any limitations on choice of modulations because of emission requirements
- An optimum and robust full-duplex PHY architecture design should
 - Consider all possible modulations schemes & detailed channel information
- Have as much information as possible about the channel/environment
 - Define voltage magnitude limit lines for different interference sources coupled to the signal lines (e.g. NBI, Impulse)
 - Necessary to find a proper FEC and its associated overhead
 - Define Channel S-parameter limit lines with 40% excess BW above Nyquist
 - 1.25 (Excess BW) x 11.5% (Code overhead) = <u>~1.40</u>

