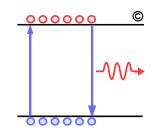

C2M AUI and Cu MDI Options

Ali Ghiasi Ghiasi Quantum LLC

IEEE 802.3 100GEL Task Force Interim Meeting


May 24, 2018

List of Supporters

- **Christophe Metivier Arista Network**
- Rob Stone Broadcom
- David Piehler Dell
- **Brian Taylor Facebook**
- **Zuowei Shen Google**
- **Xinyuan Wang Huawei**
- Hong Feng Huawei

Overview

This contribution is an update to adhoc presentation ghiasi_100GEL_adhoc_01_050918.pdf

- Considers host channel via loss and MCB/HCB min/nom/max loss
- Historically these 2nd order effects have been ignored but at 26.55 GHz becoming substantive

This contribution in addition to symmetric also explores asymmetric and dual port types, where all 3 schemes may support 2 m Cu cables

- Symmetric single port type
 - Define a common port with 10.4 dB for C2M and host Cu-MDI
- Asymmetric single port type switch-NIC ports
 - Defines max 14 dB loss for switch Cu MDI/C2M
 - Defines max 10.4 dB loss for NIC Cu MDI/C2M
- Symmetric dual port types
 - Define max loss of 10.4 dB for symmetric dual-port type to support Cu cable and optics/AOC
 - Define max loss of 15 dB for C2M ports supporting AOC/Optics/Active DAC

A symmetric-single port type with 10.4 dB loss will have substantial power-cost penalty on high port counts ASICs!

000000 Lim Proposal Ball-Ball Loss Needs to be Reduced to 28 dB $-\sqrt{/}$ **Based on 100GEL Objective** 000000

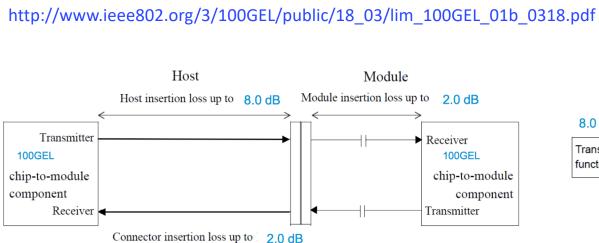


Figure 1: 100GEL C2M insertion loss budget at 26.56 GHz

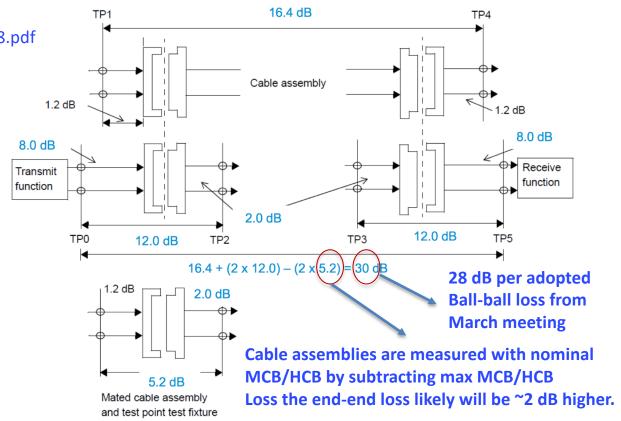
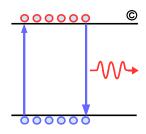
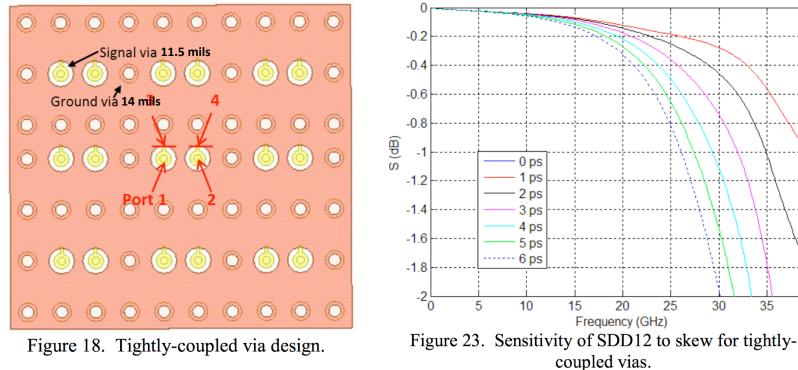



Figure 2: 100GEL CR 30dB insertion loss budget at 26.56 GHz

©


Striplines Via Insertion Loss

Typical C2M stripline traces will have two vias, result below are for 112 mils deep via on a 129 mils board

- For 6 ps skew via loss @ 26.55 could be ~1 dB and even higher for smaller drill size! ____
- For this analysis will assume 3.5 ps skew and the via loss of ~0.5 dB @26.55 GHz! ____

Tradeoffs between tightly and loosely coupled differential vias for multi-Gbps design, Clement Luk, Designcon 2016.

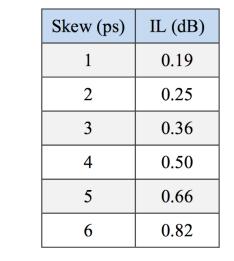


Table 1. Differential IL of tightly coupled vias vs. skew at 25GHz.

25

30

35

40

C2M Channel Reach

PCB loss estimate assumptions and tools for calculation

 Rogers Corp impedance calculator (free download but require registration) <u>https://www.rogerscorp.com/acm/technology/index.aspx</u>

N/A

N/A

N/A

6.5

10.5

10.4

8

14

15

 The IEEE tool if updated could be another option to estimate channel reach <u>http://www.ieee802.org/3/bj/public/tools/Reference___DkDf_AlegbraicModel_v2.04.pdf</u>

Total Loss (dB) Via Loss (dB) - 2 via loss

0.05

0.15

0.5

N/A

N/A

N/A

N/A

N/A

N/A

- Stripline ~ 50 Ω , trace width is 5.5 mils, and with ½ oz Cu
- Isola 408HR DK=3.65, DF=0.0095, RO=2.5 um, Meg-6 DK=3.4, DF=0.005, RO 1.2 μm, Tachyon100 DK=3.02, DF=0.0021, RO=1.2 μm
- To support equivalent PCB traces for C2M need at least 14.5-15 dB end-end channel loss consistent with tracy_100GEL_01a_0118

Host PCB Loss(dB)

N/A

N/A

N/A

4.9

6.51

5.4

4

9

10

100GEL Task Force

Isola 408HR

0.65

1.27

2.18

7.5

5.1

2.5

1.8

4.1

4.6

Assumed loss for two vias is 1 <u>dB@26.55</u> GHz.

* Assumes connector loss is 1.69 dB and HCB loss is 2.0 dB at 12.89 GHz

** Assumes 2 dB to support stacked connectors, 2 dB for HCB, 1 dB for 2 vias at 26.55 GHz, and the budget adjust based on 28 dB ball-ball.

*** Assumes 1 dB to SMT connector, 2 dB for HCB loss at 26.55 GHz, and 1 dB for 2 vias at 26.55 GHz.

**** Assumes 2 dB to support stacked connectors, 2 dB for HCB, and 1 dB for 2 vias at 26.55 GHz.

Host Trace Length (in)

Nominal PCB Loss/in at 5.15 GHz

Nominal PCB Loss/in at 13 GHz

Nominal PCB Loss/in at 27 GHz

28G-VSR + stack connector *

C2M with Stacked connector ****

10GSFP+ with one connector & HCB

Lim symetric proposal adj for 28 dB **

Asymetric NIC port with SMT connector ***

Asymetric Switch with Stacked connector ****

0.52 0.98 1.60

9.4

6.6

3.4

2.5

5.6

6.3

Megtron 6

Reach Inches Too Short

Tachyhon100

0.46

0.83

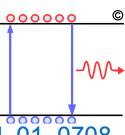
1.28

10.7

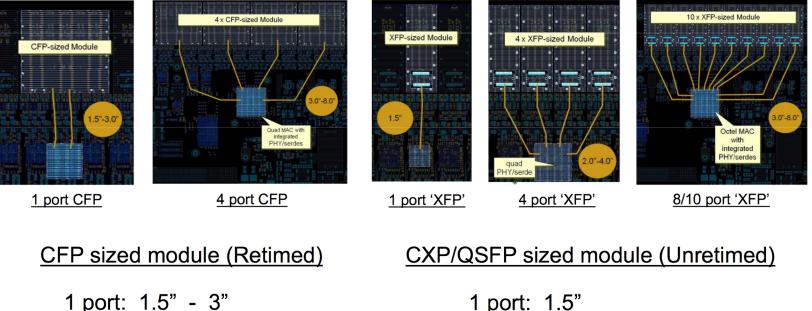
7.8

4.2

3.1

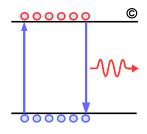

7.0

7.8


 \checkmark

 \checkmark

nicholl_01_1111_NG100GOPTX States an Octal XFP Ports Requires 3-8"


- Distances for nAUI/nPPI were primarily driven out of nicholl_01_0708
- Symmetric proposal based on 28 dB ball-ball loss with 2 m Cu support the host PCB is limited to 4.2" only
- 4.2" is length of PCB trace necessary typically for a Quad PHY!

4 port: 3.0" - 8.0"

- 1 port: 1.5" 4 port: 2.0" - 4.0" 8 port: 3.0" - 8.0"
- In keeping with the 'Quad Phy' rule-of-thumb, 802.3ba targeted 8" for nAUI (retimed) and 4" for nPPI (unretimed)

10G SFP+

10G SFP+ was the first Ubiquitous port supporting optical and passive Cu

- 10G SFP+ supported 200-300 mm of host PCB trace on mid-grade material
- 10GSFP+ Cu DAC did not burden or reduce the host PCB trace
- lim_100GEL_01b_0318.pdf in order to support Cu cable even with best material Megtron 7NE PCB limited to 4.2" after adjusting for 28 dB ball-ball loss, via loss, and mated board loss adjustment.

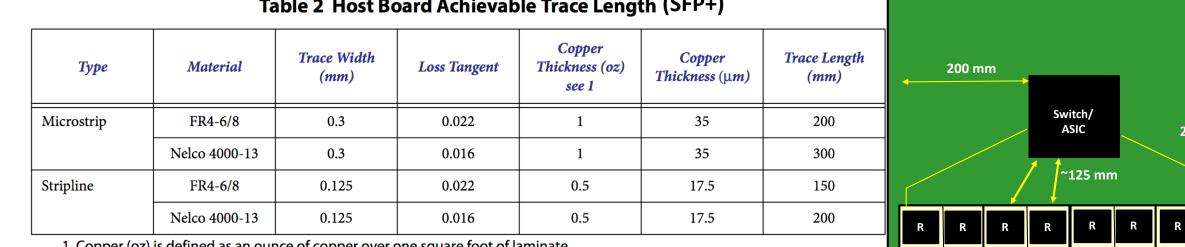
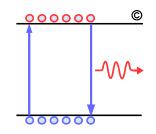
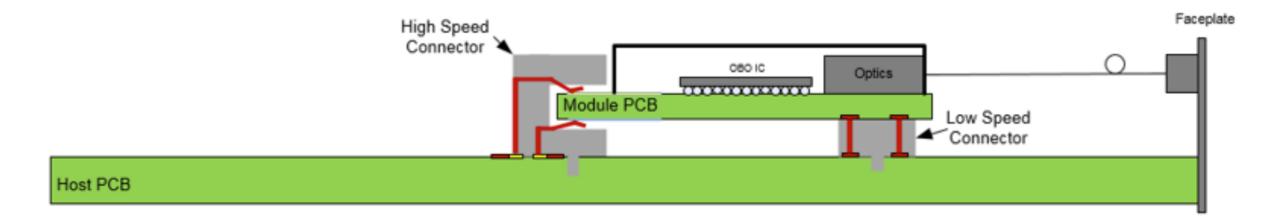
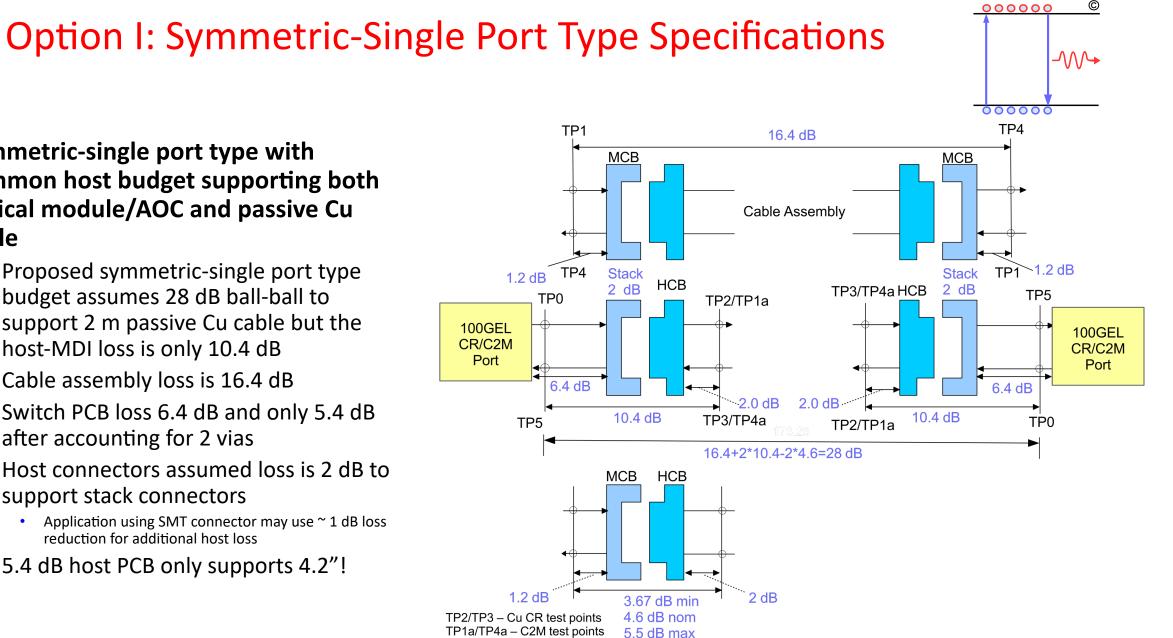



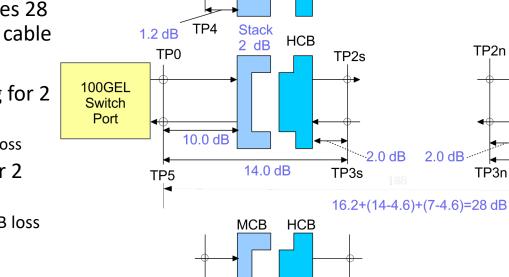
Table 2 Host Board Achievable Trace Length (SFP+)

1. Copper (oz) is defined as an ounce of copper over one square foot of laminate.


250 mm


COBO – Uses VSR Specifications

COBO (on board optics) electrical interface is based on VSR given the PCB trace length


- In order to support 36 Cobo modules from single ASIC ~9" of host PCB is required
- XSR specifications based on 4.2 dB would have offered lower power dissipation but XSR supporting only 50 mm host PCB trace would have required 2nd retimer on the line card
- If Cobo requires >8" how do we expect that 5-6" is enough for pluggable modules!

- Symmetric-single port type with common host budget supporting both optical module/AOC and passive Cu cable
 - Proposed symmetric-single port type budget assumes 28 dB ball-ball to support 2 m passive Cu cable but the host-MDI loss is only 10.4 dB
 - Cable assembly loss is 16.4 dB ____
 - Switch PCB loss 6.4 dB and only 5.4 dB after accounting for 2 vias
 - Host connectors assumed loss is 2 dB to support stack connectors
 - Application using SMT connector may use ~ 1 dB loss reduction for additional host loss
 - 5.4 dB host PCB only supports 4.2"! _

100GEL Task Force

3.67 dB min

5.5 dB max

TP1

MCB

16.2 dB

Cable Assembly

2 dB

Option II: Asymmetric-Single Port Type Specifications

- Asymmetric-single port type with common switch and NIC budget supports both passive Cu cable and optical module/AOC on all ports
 - Proposed asymmetric link budget assumes 28 _ dB ball-ball to support 2 m of passive Cu cable
 - Cable assembly loss is 16.2 dB _
 - Switch PCB loss is ~9 dB after accounting for 2 vias with 1 dB loss supports 7" PCB
 - Switch connector assumed stacked with 2 dB loss
 - NIC PCB loss is ~3 dB after accounting for 2 _ vias with 1 dB loss supports 3" PCB
 - NIC connector assumed to be SMT with 1 dB loss
- Asymmetric-single port type require introducing 2 additional test points to support NIC test poits
 - TP2s and TP3s for switch output/input
 - TP2n and TP3s for NIC output/input.

1.2 dB

TP2n/TP3n – NIC test points

TP2s/TP3s – Switch test points 4.6 dB nom

C 000000 -///-> 000000

1.2 dB

100GEL

NIC

Port

4 dB

TP4

TP1

TP5

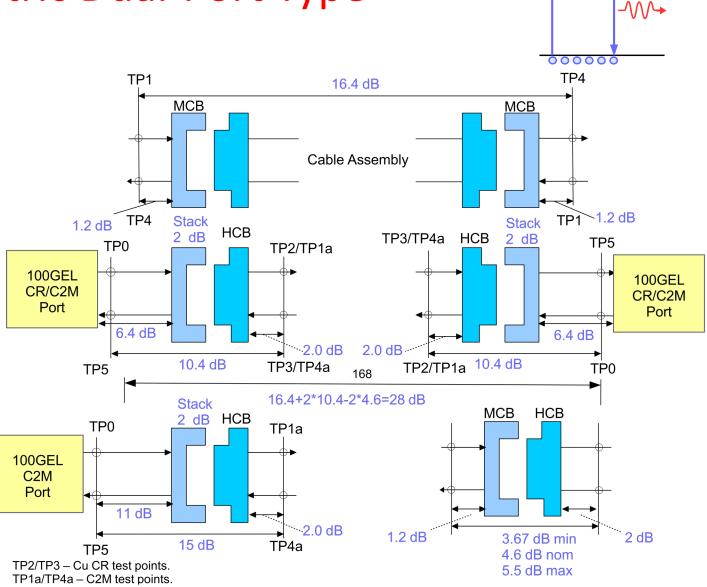
TP0

MCB

SMT

1 dB

HCB


7.0 dB

TP3n

Option III: Symmetric Dual-Port Type

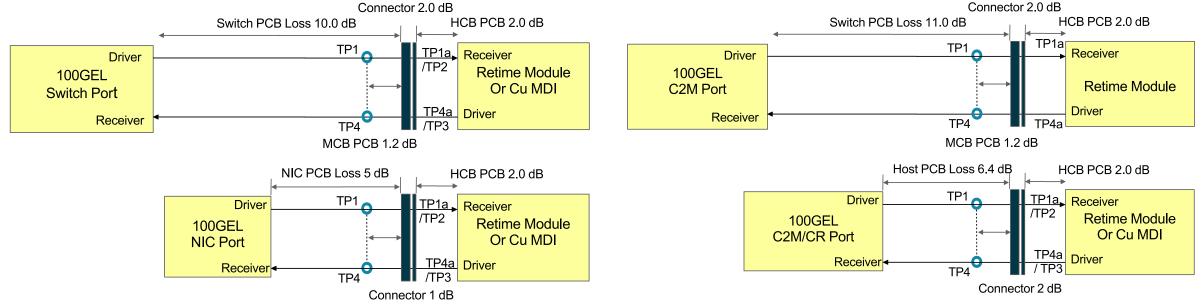
- Symmetric dual-port type allow building a superset port supporting passive Cu cable and optical port/AOC or build an optical/AOC/Active Cu ports if passive Cu cable support not required
- Symmetric dual-port type with common host budget supports both C2M and Cu MDI
 - Proposed symmetric dual-port type budget assumes
 28 dB ball-ball to support 2 m of passive Cu cable
 with loss of 16.4 dB
 - Superset port supporting passive Cu and optical/AOC max channel loss is 10.4 dB
 - Cu host channel loss based on 6.4 dB or 5.4 after accounting for 2 vias, which supports
 - C2M ports supporting optical/AOC max loss is 15 dB
 - C2M host channel loss based on 11 dB or 10 dB after accounting for 2 vias supports
 - Host connectors assumed loss is 2 dB to support stack connectors
 - Application using SMT connector may use ~ 1 dB loss reduction for additional host loss

C2M budget in symmetric dual-port type is not tight to Cu cable end-end loss.

A. Ghiasi

C

000000


Overview of Symmetric and Asymmetric Port Types

Symmetric single-port type

- Supports Cu cables on all port types (diagram similar to lower right)
- Not viable due extra short ~4.2" host PCB trace
- Asymmetric single-port type
 - Supports Cu cables on all switch-NIC port but not on switch-switch

Asymmetric Single Port-Type

- **Symmetric dual-port types**
 - Supports passive Cu cable on superset ports having max loss of 10.4 dB loss.

C

-///->

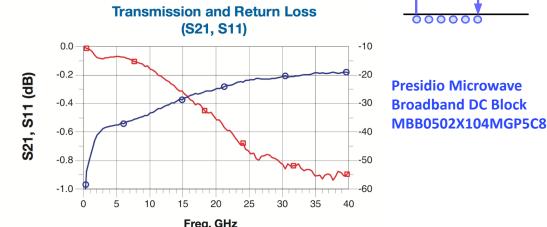
000000

000000

Symmetric Dual-Port Type

Building Cu Cable Assembly Loss from Ground Up

Assuming 2 m objective can only be met with 26 AWG


More likely deployment will be 1.5 m on 28 AWG

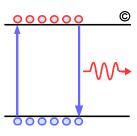
QSFP Cu cable loss estimate are 5.05 dB/m for 26 AWG and 7.6 dB for 28 AWG, see

http://www.ieee802.org/3/100GEL/public/18_03/palkert_100GEL_01a_0318.pdf

Key assumed cable assembly losses:

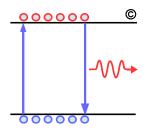
- DC block 0.8 dB one of
- Plug PCB loss 1 dB 2 of
- MCB connector 1 dB 2 of
- MCB PCB board 1.2 dB 2 of
- Analysis does not include any via loss associated with QSFP-dd rear contacts
- Symmetric dual port-type Cu cable budget can be increased to allow supporting 1.5 m 28 AWG Cu cables by reducing the Cu host channel.

able assembly elements	2 m 26 AWG	1.5 m 28 AWG		
able loss dB/m	5.05	7.60		
able loss (dB)	10.1	11.4		
ominal MCB PCB loss 2 of (dB)	2.0	2.0		
ICB connector loss 2 of (dB)	2.0	2.0		
able plug PCB loss 2 of (dB)	2.0	2.0		
C block (dB)	0.8	0.8		
able assembly end-end loss (dB)	16.9	18.2		


D

©

-^\/\-


000000

Options Moving Forward

Options	Applications Supported	PHY-Less Support on High Radix Switch	Supports ~2 m Cu	C2M Applications
I- Symmetric port type -10.4 dB	Switch-Switch, and Switch-NIC	No (~2/3 of ports require retimers)	Yes	Penalized by Cu cable by forcing retimers on ~ 2/3 of ports on a system never using Cu cable!
II- Asymmetric- Single Port Type 14.0 dB switch 7.0 dB NIC	Switch-NIC	Yes	Yes	Not penalized by the Cu cable
III- Symmetric Dual-Port Types Cu ports 10.4 dB C2M ports 15 dB	Switch-Switch, and Switch-NIC (Superset ports with 10.4 dB support both Cu/optics but C2M with 15 dB only optics/AOC)	Optional (If Cu cable support required then ~2/3 of ports need retimers to implement superset port)	Yes (on the superset ports)	Not penalized by the Cu cable

Summary

- The proposed lim_01b_0318.pdf based on 30 dB symmetric single port-type proposal adjusted for 28 dB ball to ball loss
 - After considering via loss and difference between MCB connector loss vs stacked host connector symmetric single port-type host PCB loss is only 5.4 dB or about 4.2"
 - If we need to support 2 m Cu cabling symmetric single port-type is not a viable option

This contributions investigates

- Option I Symmetric single port-type based on ~10.4 dB loss
- Option II Asymmetric single port-type based on 14.0 dB for switch and 8.0 dB for NIC loss
- Option III Symmetric dual port-type based on 10.4 dB for CR/C2M superset ports and 15 dB for C2M
- Asymmetric single port-type offers passive Cu cable support on every switch-NIC ports but not on switch-switch ports
 - Asymmetric budget is getting tight with NIC PCB allocation limited to 4 dB only
- Symmetric dual-port types allocates higher host PCB loss for C2M but lower host PCB loss for superset Cu host-MDI/C2M ports and offer a more robust path to support 2 m of Cu Cable
 - Symmetric dual-ports offers more generous budget for C2M and the budget isn't locked to 28 dB CR ball-ball loss
- The 100GEL task force need to investigate further option III symmetric dual port-types and option II asymmetric single port type
 - Option III offers more generous budget without the complications associated with asymmetric port definition
 - Option II can also work but the budget for switch and NIC PCB traces are getting tight
- Area of further study: better understanding of MCB/HCB loss, better way to account the difference between cable measured with SMT MCB vs host using stack connectors, technical feasibility of 28 dB ball-ball loss to support 2 m Cu cable, better understanding of C2M equalizer and channels.