Considerations for Link Loss - 2

Vince Ferretti

Corning IEEE P802.3cs Task Force, November 2019

Background

- Link loss design can be challenging over longer link lengths
- In determining link loss for a concatenated series of optical cables in a link, methods other than maximum attenuation coefficient can be used
- ITU-T G.652D appendix 1 provides guidance on using statistical modeling to develop economic design models
- Corning has also conducted further analysis

G.652 Appendix 1:

Information about cabled fibre link attributes used for system design

- The <u>worst case design</u> is a deterministic methodology utilizing minimum and maximum values and is useful for a transmission system with a small number of components and spliced factory lengths of optical fibre cables.
- On the other hand, for a <u>concatenated link that includes a large</u> <u>number (>8) of spliced factory lengths of optical fibre cable</u>, the transmission parameters for the concatenated link must take into account not only the performance of the deterministic attributes of individual cable lengths but also the <u>statistics of concatenation</u>.
- The transmission characteristics of the factory length optical fibre cables will have a certain probability distribution which can be taken into account if the most economic designs are to be obtained.

G.652 Appendix 1:

Information about cabled fibre link attributes used for system design

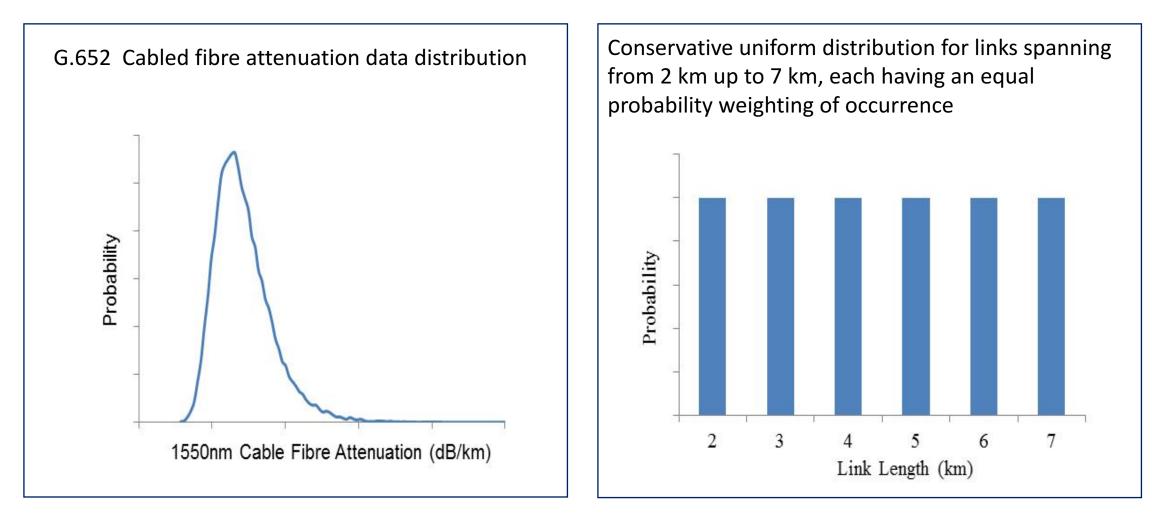
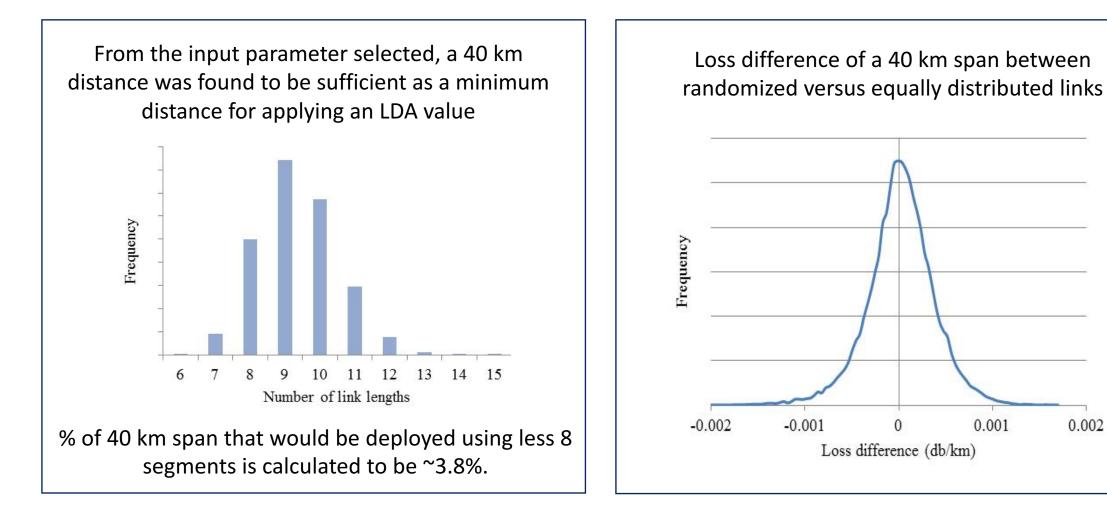
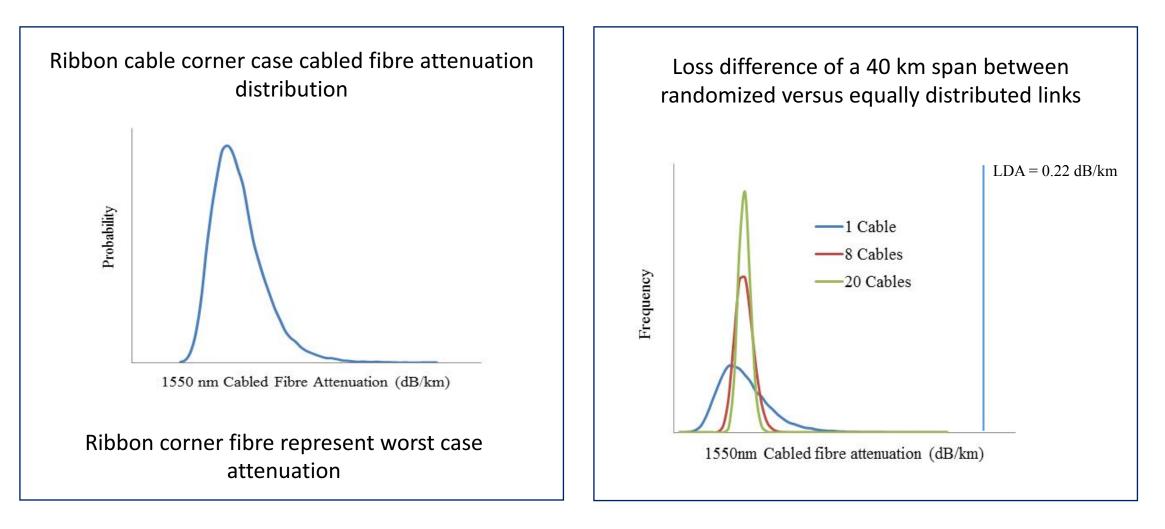

Attenuation coefficient	Wavelength region	Typical link value
(Note)	1260 nm-1360 nm	0.5 dB/km
	1530 nm-1565 nm	0.275 dB/km
	1565 nm-1625 nm	0.35 dB/km
Chromatic dispersion parameter	D_{1550}	$17 \text{ ps/(nm \times km)}$
	S_{1550}	$0.056 \text{ ps/(nm}^2 \times \text{km})$
NOTE – Typical link value corresponds to the link attenuation coefficient used in [b-ITU-T G.957] and [b-ITU-T G.691].		

Table I.1 – Representative values of concatenated optical fibre links

Further Corning Study Analysis and Results

- Corning conducted further study to analyse the impact of a randomized link length distribution on the link design attenuation (LDA) specification.
- In addition, evaluation of ribbon cable corner fibres impact (worst case) on the LDA was also analysed.
- To properly assess the impact of a randomized link length deployment for LDA a Monte Carlo analysis was performed with assumptions shown on following slides.


Randomized link length distribution impact to Link design attenuation (LDA) Assumptions


Randomized link length distribution impact to Link design attenuation (LDA) Assumptions

0.001

0.002

Randomized link length distribution impact to LDA Results

Further study across C and L Bands

- Because 802.3cs architecture will transmit signals across the C and L bands, more study was conducted to characterize worst case wavelengths.
- Corning was able to collect extensive data at 1490nm and 1625nm to add to the 1550nm data
- With this data, using the same analysis as previously used for 1550nm, the LDA value increased from 0.22dB/km to 0.24dB/km or an overall cable loss of 12dB at 50km.
- This value adds another layer of conservatism as the minimum and maximum wavelengths proposed in 802.3cs are 1532nm and 1598nm.

Conclusions

- When optical links have multiple (>8) concatenated links, statistical modeling can be used to determine more economical design models
- G.652 Appendix 1 offers an informative very conservative approximation of this model
- Further Corning Study offers analysis that a lower attenuation can be calculated
- Recommend that 802.3cs choose LDA when building informative models to describe the black link in the Super-PON system

Thanks!