C/ 152 SC 152.5.2.3 P62 L27 # 1 C/ 152 SC 152.5.3.6 P68 L3 Huawei Huawei Bruckman, Leon Bruckman, Leon Comment Type ER Comment Status D Comment Type T Comment Status D Typo: tx scrambed Substituting the fixed bytes of the alignment markers corresponding to PCS lanes 17, 18, and 19 with the fixed bytes for the alignment marker corresponding to PCS lane 16 is SuggestedRemedy required for EEE deep sleep mode that is not define for 100GBASE-ZR. Replace with: tx scrambled SuggestedRemedy Proposed Response Response Status O Remove requirement to substitute PCS lanes 17, 18, and 19 with the fixed bytes for the alignment marker corresponding to PCS lane 16 Proposed Response Response Status O SC 152.5.2.5 P62 L37 C/ 152 Bruckman, Leon Huawei C/ 153 SC 153.2.3.2.4 P84 L45 Comment Type E Comment Status D This section is exactly the same as 91.5.3.5. Better refer to that section than repeat the Bruckman, Leon Huawei whole thing Comment Type ER Comment Status D SuggestedRemedy From the text it is not clear why MFAS is required. I assume the main reason of defining and using it is that the SC-FEC uses it to identify the blocks (and not for the PT Replace the text in the section with: See 91.5.3.5 identification). It will be beneficial to have some text justifying the MFAS support. Proposed Response Response Status O SuggestedRemedy Replace 2) with the following text: The MFAS is a multi-frame alignment signal. This field counts from 0 to 255, encoded with the most significant bit transmitted first; and it is C/ 152 SC 152.5.3.5 P66 / 40 # 3 required by the SC-FEC to identify the blocks (refer to ITU-T G.709.2 Annex B). Bruckman, Leon Huawei Proposed Response Response Status O Comment Type E Comment Status D This section is exactly the same as 91.5.2.5. Better refer to that section than repeat the whole thing C/ 153 SC 153.2.3.2.4 P84 L48 SuggestedRemedy Bruckman, Leon Huawei Replace the text in the section with: See 91.5.2.5 Comment Type E Comment Status D Proposed Response Response Status O Missing part of the reference "G.709.2" SuggestedRemedy Refer to "ITU-T G.709.2" Proposed Response Response Status O

C/ 153 SC 153.2.3.2.4 L17 # 7 C/ 153 SC 153.2.3.3.5 P89 L29 # 10 P85 Huawei Bruckman, Leon Bruckman, Leon Huawei Comment Type Ε Comment Status D Comment Type Ε Comment Status D Text not clear. This section describe the GMP demapper, so the demapper should be guoted. SuggestedRemedy SuggestedRemedy Replace: "The principles of the GMP mapper" with: "The principles of the GMP demapper" Replace: "While GMP is a generic mechanism that can accommodate an arbitrary signaling rate difference between the payloadand the space in which it is carried that uses a Proposed Response Response Status O sigma/delta distribution algorithm," with: "While GMP is a generic mechanism that can accommodate an arbitrary signaling rate difference between the payloadand the space in which it is carried by implementing a sigma/delta distribution algorithm, SC 153.2.4 P89 C/ 153 L 50 Proposed Response Response Status O Bruckman, Leon Huawei Comment Type TR Comment Status D # 8 C/ 153 SC 153.2.3.2.4 P86 L23 Since the MFAS is required for the SC-FEC block identification, the MFAS synchronization algorithm should be defined. Bruckman, Leon Huawei SuggestedRemedy Comment Type TR Comment Status D Add MFAS sinchronization similar to the one defined in ITU-T G.798 section 8.2.2 In table 153-1 the II and DI bits in rows 2 and 3 are wrong Proposed Response Response Status O SuggestedRemedy II in row 2 should be 1 and DI should be 0, and in row 3 II should be 0 and DI should be 1. Proposed Response Response Status O C/ 153 SC 153.2.5 P93 / 31 # 12 Bruckman, Leon Huawei Comment Type TR Comment Status D C/ 153 SC 153.2.3.2.4 P87 1 23 In table 153-2 there is no instatus for MFAS Bruckman, Leon Huawei SugaestedRemedy Comment Type TR Comment Status D The note may mislead people to think that the 100GBASE-RZ signal is interoperable with Add MFAS lock status to table 152-3 an OTU4 interface, but this is not the case since all OAM fields of an OTU4 signal (except Proposed Response Response Status O FAS, MFAS and PT) are not assigned in a 100GBASE-RZ signal.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

SuggestedRemedy

Proposed Response

2 - Just remove the note

I recommend to consider one of the following options:

1 - Do not define the PT and remove the note

Response Status O

SC 154.7.3 C/ 154 SC 154.5.4 L22 # 13 C/ 154 P110 L39 P105 # 16 Huawei Maniloff, Eric Ciena Bruckman, Leon Comment Type TR Comment Status D Comment Type т Comment Status D There is a single optical lane No value in table 154-10 for power penalty for unamplified applications SuggestedRemedy SuggestedRemedy Repalce: "SIGNAL DETECT shall be a global indicator of the presence of optical signals Add power penalty entry on both lanes." with: "SIGNAL DETECT shall be an indicator of the presence of an optical Proposed Response Response Status O Also fix accordingly Table 154-5 by removing from row 1 "For any lane;" and from row 2: "For all lanes:" C/ 154 SC 154.7.3 P111 **L6** Proposed Response Response Status O Maniloff, Eric Ciena Comment Type T Comment Status D P45 # 14 C/ 45 SC 45.2.1.186 L24 PDL level is low for amplified DWDM application Maniloff, Eric Ciena SuggestedRemedy Comment Type T Comment Status D Increase PDL to 2.5dB SC-FEC needs counters defined to allow monitoring pre-FEC BER. Counters for corrected Proposed Response Response Status O bits (pre-Fec bit-errors) and total bits would provide this. SuggestedRemedy Add 64 bit counters for these C/ 153 SC 153.2.3.2.4 P84 L37 # 18 Proposed Response Response Status O Schmitt. Matt Cablel abs Comment Status D Comment Type E The text immediately following Figure 153-3 reads awkwardly: the first sentence reads as if C/ 153 SC 153.2.5 P93 L30 # 15 it should end with a colon because it's setting up the list, whereas the second sentence with the colon is providing more context. Maniloff, Eric Ciena Comment Status D Comment Type T SuggestedRemedy Table 153-2 should define registers for calculating pre-FEC BER. The two sentences should ideally be merged together, perhaps by making the second sentence a paranthetical comment on the first (in other words, putting all of the second SuggestedRemedy sentence in parantheses), which then technically has the colon at the end of a single Add corrected bits and total bits to Table 153-2 sentence. Proposed Response Proposed Response Response Status O Response Status O

C/ 00 SC 0 P85 L48 # 19
Schmitt, Matt CableLabs

Comment Type E Comment Status D

Is it standard practice in 802.3 to use a dash "--" to designate bullets in a list? It looks odd, and shows up in multiple places (the first being on page 85 in 153.2.3.2.4, line 48).

SuggestedRemedy

Replace with dotted bullets, if permissible under 802.3 style guidelines.

Proposed Response Status O

C/ 153 SC 153.3.2.3.2 P96 L31 # 20

Schmitt, Matt CableLabs

Comment Type E Comment Status D

In the title and text of this section, should the word be "disinterleave" or "deinterleave"? I am more familiar with the latter

SuggestedRemedy

Change "disinterleave" to "deinterleave".

Proposed Response Response Status O

Cl 154 SC 154.6 P107 L40 # 21

Schmitt, Matt CableLabs

Comment Type E Comment Status D

This table has been constructed so that there are two parallel sets of 3 columns each within the same table. Because there is nothing to show a separation between the two sets of 3 columns, unless you study the table closely, it appears instead to be a 6 column table, and it's not immediately obvious that the last 3 columns are "wrap around" data from the first 3 columns (especially since the table already goes across pages).

SuggestedRemedy

While it might take up more pages, for clarity, a single table of 3 columns might work much better. Alternately, create some separation between the 3rd and 4th columns so that it's clear it's two separate sets of data.

Proposed Response Response Status O

C/ 154 SC 154.6 P107

Schmitt, Matt CableLabs

Comment Type E Comment Status D

While technically the "Channel Index Number" is arbitrary, and therefore starting from zero makes a certain amount of logical sense, it is common practice in other forums to align the "channel number" with the last two digits of the Channel Center Frequency, thereby making it easy to understand immediately from the channel number what the frequency is or vice versa. This would improve the value and usability of the channel number.

L44

22

SuggestedRemedy

Change the first "Channel index number" from "0" to 14 (to align with 191.4 THz Channel center frequency), and update all subsequent "Channel index numbers" accordingly, such that the last "Channel index number" becomes "61".

Proposed Response Status O

Cl 154 SC 154.8.12 P113 L4 # 23

Schmitt, Matt CableLabs

Comment Type T Comment Status D

It's good that we point out that there is a linkage/pairing between this parameter and OSNR(193.6) [amplified]. However, we don't explain what that linkage is and how it applies, which could leave a reader confused as to what that means.

SuggestedRemedy

Add an explanation of how they're linked. This could be an extensive one -- probably in a separate section -- that includes a diagram along the lines of what was presented to the TF in a previous contribution, or it could even be some simple text added here (or both). Some possible example text of an extension to the existing sentence might be along the lines of: "Note that this parameter is paired with OSNR(193.6) [amplified], in that it defines the average input power at which the OSNR(193.6) [amplified] is measured."

Proposed Response Response Status O

C/ 154 SC 154.8.13 P113 L9 # 24

Schmitt, Matt CableLabs

Comment Type T Comment Status D

Same comment as above for 154.8.12.

SuggestedRemedy

Same comment as above for 154.8.12.

Proposed Response Status O

Comment Type T Comment Status D

The definition in G.698.2 that is being referenced here states in part that: "The receiver OSNR tolerance is defined as the minimum value of OSNR at point RS that can be tolerated while maintaining the maximum BER of the application. This must be met for all powers between the maximum and minimum mean input power with a transmitter with worst-case values of...[list of parameters]. And also that: "The receiver OSNR tolerance is equal to the minimum OSNR at point RS minus the maximum optical path OSNR penalty." We have defined a maximum optical path OSNR penalty of 3 dB, and have therefore established that the value of this parameter is 16.5 dB (in Table 154-9). This is based off of subtracting 3 from the Minimum OSNR(193.6) [amplified] value of 19.5 dB. However, that last parameter is only relevant to the amplified case; we also have a Minimum average input power [unamplified] which is -30, and an associated Minimum OSNR(193.6) [unamplified] of 35 dB (meaning that achieving a minimum average input power of -30 dBm is only possible when the OSNR is 35 dB or greater). However, a strict reading of the definition for Receiver OSNR tolerance implies that -30 dBm would also have to be met at 16.5 dB OSNR, which is not realistic or intended.

SuggestedRemedy

There are several possible options for addressing this. One would be to create separate Receiver OSNR tolerance parameters for the amplified and unamplified cases. Another would be to clarify that this parameter applies only in the amplified case. Another would be to introduce a more thorough explanation of the relationship between power and OSNR in the requirements (as suggested above). A combination of more than one of these solutions would likely work as well.

Proposed Response Status O

C/ 45 SC 45.2.1.186ab P36 L21 # 26

Trowbridge, Steve Nokia

Comment Type TR Comment Status D

Clause 152.6.6 indicates that FEC_optional_states is always set to true. Note that this was a bug fix that was only made optional to avoid making implementations prior to the maintenance request non-compliant. Since Inverse RS-FEC is new, these states should not be optional.

SuggestedRemedy

Remove "0 = RS-FEC does not support optional states in Figure 91–8"

Proposed Response Status O

Cl 45 SC 45.2.1.186ab P37 L25 # 27

Trowbridge, Steve Nokia

Comment Type TR Comment Status D

Clause 152.6.6 indicates that FEC_optional_states is always set to true. Note that this was a bug fix that was only made optional to avoid making implementations prior to the maintenance request non-compliant. Since Inverse RS-FEC is new, these states should not be optional.

SuggestedRemedy

Remove "When read as a zero, bit 1.2201.7 indicates that the optional states are not implemented."

Proposed Response Status O

C/ 80 SC 80.1.5 P48 L3 # 28

Trowbridge, Steve Nokia

Comment Type E Comment Status D

This editing instruction seems not entirely consistent with prior projects. IEEE Std 802.3cd has added a Table 80-4a (which presumably gets merged into Table 80-4 at the next revision) with the 100GBASE-SR2 and 100GBASE-DR PHY types. P802.3cu Draft 1.0 shows adding 100GBASE-FR1 and 100GBASE-LR1 to P802.3cd Table 80-4a rather than to Table 80-4 itself. As a single-lane PHY, does this belong in Table 80-4a rather than Table 80-4, or alternatively, should a new Table 80-4b be created for this new different PHY type?

SuggestedRemedy

Either add 100GBASE-ZR to Table 80-4a from 802.3cd or to a new Table 80-4b

Proposed Response Response Status O

C/ 80 SC 80.5 L1 # 29 C/ 152 SC 152.5.3.2 P66 L17 P53 # 32 Trowbridge, Steve Trowbridge, Steve Nokia Nokia Comment Type T Comment Status D Comment Type TR Comment Status D Since the Inverse RS-FEC and SC-FEC sub-layers remove all prior skew and start a fresh Since there is no more skew opportunity between the RS FEC and Inverse RS FEC skew budget, the only real question to be answered regarding whether we need to establish sublayer (generally at most a single C2M interface, no optical link) than there is between new skew limits for this interface is if the skew opportunity between SP3 and SP4 (which the PCS and the RS FEC sublayer, no reason not to use the same skew and skew could only occur between the two streams of DQPSK symbols on the two polarizations) variation limits as Clause 91 in the Tx direction. could exceed the 80ns of skew or 2.4ns of skew variation already included in clause 80.5. SuggestedRemedy SuggestedRemedy Change the skew TBD to 49ns and the skew variation TBD to 400ps Add to editor's note that this depends on whether the maximum skew between streams of Proposed Response Response Status O DPQPSK symbols on the two orthogonal polarizations can experience more than 80ns of skew or 2.4ns of skew variations across the black link. Proposed Response Response Status O C/ 153 SC 153.2.3.2.2 P84 L10 # 33 Trowbridge, Steve Nokia C/ 152 SC 152.5 P60 L28 # 30 Comment Status D Comment Type TR In the Tx direction, there is exactly the same skew opportunity between the PCS or Inverse Trowbridge, Steve Nokia FEC sublayer and the SC-FEC sublayer as there is between the PCS and the RS FEC Comment Type TR Comment Status D sublaver, so no reason to use any other value than Clause 91 While it is specified elsewhere, it is worth noting in the overview that another difference SuggestedRemedy from Clause 91 is that the FEC optional states are mandatory here. Change the skew TBD to 49ns and the skew variation TBD to 400ps SuggestedRemedy Proposed Response Response Status O

Add a sentence to this clause "The FEC optional states in clause 91 are mandatory for the Inverse FEC sublayer"

Proposed Response Response Status O

SC 152 5 2 1 C/ 152 P62 L7

Trowbridge. Steve Nokia Comment Type TR Comment Status D

While it is specified elsewhere, it is worth noting where Figure 91-8 is referenced that the FEC optional states from that state diagram are mandatory in this context.

SuggestedRemedy

Add a sentence "Note that the FEC optional states, illustrated with the states within the dotted line of Figure 91-8, and Transition A, are mandatory in the context of the Inverse RS FEC sublayer."

Proposed Response Response Status O C/ 153 SC 153.4.4.1

P98 Nokia

/ 20

Trowbridge, Steve

Comment Status D Comment Type TR

As described in other comments, no reason to use different skew or skew variation numbers in the Tx direction than Clause 91

SuggestedRemedy

Change the skew TBD to 49ns and the skew variation TBD to 400ps

Proposed Response Response Status O

C/ 154 SC 154.1 L27 # 35 Cl 45 P27 L18 P101 SC 45.2.1.133b # 38 Nicholl, Gary Cisco Trowbridge, Steve Nokia Comment Type E Comment Status D Comment Type Ε Comment Status D Unbalanced legend under Figure 154-1 This sectuoin talks about "Tx optical frequency index" but referes to Table 154-6 which uses the term "Channel Index number" SuggestedRemedy SuggestedRemedy Move PCS to the top of the right column so both columns are the same length Propose using consistent terminologt between Clause 45 and Clause 154. Proposed Response Response Status O Proposed Response Response Status O C/ 154 SC 154.4 P103 L42 # 36 C/ 80 SC 80.1.3 P46 L7 Trowbridge, Steve Nokia Nicholl, Gary Cisco Comment Type ER Comment Status D Comment Type Comment Status D Indianapolis Motion #5 adopted the channel plan for 48 channels, so TX index 47 (left and Shouldn't the editing instruction and associated text reference IEEE Std 802.3cu as well as right columns) doesn't need to be magenta IEEE Std 802.3cd, 802.3cu also made changes to item h on the list. SuggestedRemedy SuggestedRemedy Change Tx index 47 (two occurrences) to black font. Also Rx index 47 (two occurrences) to black font two rows later in the table Change the editing instruction from "as changed by IEEE Std 802.3cd-2018" to "as changed by IEEE Std 802.3cd-2018" to "as changed by IEEE Std 802.3cd-2018 and IEEE Proposed Response Response Status O Std 802.3cu-20xx" and modify the text to inorporate the changes made by 802.3cu Proposed Response Response Status O SC 154.9.2 P114 C/ 154 17 # 37 Trowbridge, Steve Nokia C/ 80 SC 80.1.4 P47 L19 Comment Type T Comment Status D Nicholl, Garv Cisco Since this is a new kind of interface for 802.3 where multiple signals from different Ethernet Comment Type E Comment Status D PHYs are combined over the same fiber inside of the black-link, clarify where this text Is the sentence beginning with "Some 100GBASE-R Physical" missing a comma after applies. Clause 91 abnd Clause 153? SuggestedRemedy SuggestedRemedy Add to the first paragraph that this text applies to the single-channel MDI for this PMD, and that optical safety at a multi-channel reference point (e.g., after a WDM multiplexer and Add missing commas.

Proposed Response

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

amplifier) is outside of the scope of this standard.

Response Status O

Proposed Response

Response Status O

C/ 80 SC 80.1.5 P48 **L6** # 41 C/ 153 SC 153.2.3.2.4 P87 L23 # 44 Nicholl, Gary Cisco Nicholl, Gary Cisco Comment Type Е Comment Status D Comment Type Е Comment Status D Should the new PMD be inlouded in Table 80-4, Table 80-4a or a new Table ? Note appears to be using the wronf font. SuggestedRemedy SuggestedRemedy Fix font used fo note. Proposed Response Response Status O Proposed Response Response Status O SC 153 P81 C/ 153 **L1** C/ 80 SC 80.2.3 P48 L47 Nicholl, Gary Cisco Nicholl, Gary Cisco Comment Type E Comment Status D Comment Type Comment Status D Would it be better to have the 100GBASE-ZR PMA in a separate clause? It doesn't look Shouldn't the editing instruction be updated to reflect the changes made in 802.3cu D1p0? like it has to be in the same clause as 153 and cluld easily be separated. Having it in the same claue as the SC-FEC, adds another layer of sub-layer number for the SC-FEC SuggestedRemedy description. Change editing instruction from "as changed by IEEE Std 802.3cd-2018" to "as changed by SuggestedRemedy IEEE Std 802.3cd-2018 and modified by IEEE Std 802.3cu-20xx" . Update the text to reflect the changes made by IEEE Std 802.3cu-20xx. Consider pulling the 100GBASE-ZR PMA into a seoarate clause to simoplify the subclause numbering in Clause 153. Proposed Response Response Status O Proposed Response Response Status O C/ 80 SC 80.4 P51 L3 # 43 C/ 119 SC 119.2 P57 L1 # 46 Cisco Nicholl. Garv D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Comment Type E Comment Status D Comment Type TR Comment Status D Table 80-3 does not show the new 100G PMDs added by IEEE Std 802.3cu-20xx. While currently in scope of P802.3ct, if the proposed modification of P802.3ct PAR SuggestedRemedy receives necessary approvals, modifications to 400GBASE-R would no longer be in scope Suggest changing the editing instruction to only show the new rows that are being inserted of 802.3ct, but would be part of the new proposed P802.3cw , as was done in IEEE Std 802.3cu-20xx SuggestedRemedy Proposed Response Response Status O Delete all proposed changes to 119 Proposed Response Response Status O

C/ 1 SC 1.4 P22 # 47 C/ 152 SC 152.1.2 P 59 L19 # 50 L 20 Futurewei, U.S. Subsidiary of Huawei Futurewei, U.S. Subsidiary of Huawei D'Ambrosia, John D'Ambrosia, John Comment Type T Comment Status D Comment Type TR Comment Status D DWDM System is not defined There are now two versions of 100G PMAs - 100GBASE-R and 100GBASE-Z. Use of generic "PMA" might cause confusion. SuggestedRemedy SuggestedRemedy Add definition - DWDM System - An aggregate of DWDM links over either a single optical Update all layer diagrams in 802.3 where "PMA" represents 100GBASE-R PMA to fiber or a single optical fiber per direction. "100GBASE-R PMA" Proposed Response Response Status O Proposed Response Response Status O C/ 154 SC 154.1 P100 **L8** # 48 C/ 154 SC 154.5.1 P104 L20 # 51 Futurewei, U.S. Subsidiary of Huawei D'Ambrosia, John D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Comment Type T Comment Status D Comment Status D Comment Type T DWDM Channel is not defined DWDM link is not defined SuggestedRemedy SuggestedRemedy Add definition - DWDM Channel - The transmission path over a single wavelength on a defined frequency grid between a DWDM PHY transmitting to another DWDM PHY. Add definition - DWDM Link - One DWDM PHY transmitting to one other DWDM PHY through the transmission path between them Proposed Response Response Status O Proposed Response Response Status O C/ 154 SC 154.1 P100 **L8** # 49 C/ 80 SC 80.1.4 P47 L30 # 52 D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Comment Type T Comment Status D Comment Type E Comment Status D "black link" is not defined During discussion of terminology it was agreed to distinguish the PHYs as "DWDM PHYs" SuggestedRemedy not just a regular PHY. This should e reflected in the description of 100GBASE-ZR. Additionally WDM lanes is terminology that has been used with WDM PHYs, which might Leverage industry definition cause some confusion. Proposed Response Response Status O SuggestedRemedy Modify description (and definition in 1.4) to 100 Gb/s DWDM PHY using 100GBASE-R encoding over a single wavelength on a defined frequency grid and is capable of running over a DWDM system, with reach up to at least 80 km (see Clause 154) Proposed Response Response Status O

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID

Comment ID 52

Page 9 of 11 10/18/2019 12:42:42 PM

C/ 80 SC 80.1.4 P47 # 53 C/ 152 SC 152.1 P58 L 58 L30 # 55 D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Futurewei, U.S. Subsidiary of Huawei D'Ambrosia, John Comment Type T Comment Status D Comment Type T Comment Status D Based on proposed modification of 100GBASE-ZR description, add a definition for DWDM The scope statement is insufficent -PHY. The Inverse RS-FEC sublaver specifies a Reed-Solomon Forward Error Correction (RS-FEC) sublaver for SuggestedRemedy 100GBASE-R PHYs. This sublayer is used in cases where the Reed-Solomon FEC Add definition - DWDM PHY - An Ethernet PHY that operates at a single wavelength on a specified in Clause 91 is defined frequency grid and is capable of running over a DWDM system used across a chip-to-chip or chip-to-module interface and the 100GBASE-ZR FEC specified in Clause 153 Proposed Response Response Status O is used between the PMD sublavers. SuggestedRemedy SC 154.1 L11 # 54 C/ 154 P100 add at end of sentence - "of two connected 100GBASE-ZR PHYs. D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Proposed Response Response Status O Comment Status D Comment Type TR This statemet is erroneous -C/ 154 SC 154.6 P107 L23 "When forming a complete Physical Layer, a PMD shall be connected to the appropriate # 56 PMA as D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei shown in Table 154-1," Comment Type Ε Comment Status D a complete 100GBASE-ZR PHY is based on the Clause 82 PCS, Lcause 153 SC FEC / 100GBASE-ZR PMA, and 100GBASE-ZR PMD. The label "DWDM network" is not defined THe 100GBASE-ZR PMD sublayer may be part of a complete PHY that can be attached to SugaestedRemedy an existing 100GBASE-R PMA sublayer. Add definition - DWDM Network - TBD

Proposed Response

SuggestedRemedy

Change following text

"When forming a complete Physical Layer, a PMD shall be connected to the appropriate PMA as shown in Table 154–1,"

to

"To form a complete 100GBASE-ZR physical layer, a PMD shall be connected to the 100GBASE-ZR PMA as shown in Table 154-1. The PMD may also be connected to the 100GBASE-R PMA sublayer as shown in Table 154-1."

Proposed Response Response Status O

Response Status O

C/ 154 SC 154.6 P107 # 57 L31 D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Comment Type E Comment Status D The DWDM frequency grid is defined by Table 154-6, which corresponds to Recommendation ITU-T G.694.1. SuggestedRemedy Reword - These multiple DWDM channels operate on a DWDM frequency grid, according to Recommendation ITU-T G.694.1. The 100GBASE-ZR PMD specification covers a maximum of 48 channels. Operation of a DWDM system with any number of channels between 1 and 48 is supported. Table 154-6 shows the mapping of the 100GBASE-ZR channel index numbers to the optical channel center frequencies. These multiple DWDM channels operate on a DWDM frequency grid, defined by Table 154-6, which shows the mapping of the 100GBASE-ZR channel index numbers to the optical channel center frequencies. This grid corresponds to the DWDM frequency grid defined by Recommendation ITU-T G.694.1. The 100GBASE-ZR PMD specification covers a maximum of 48 channels. Operation of a DWDM system with any number of channels between 1 and 48 is supported. Proposed Response Response Status O C/ 154 SC 154.7 P108 / 46 # 58 D'Ambrosia, John Futurewei, U.S. Subsidiary of Huawei Comment Type E Comment Status D Unnecessary text - A PMD that exceeds the operating range requirement while meeting all other optical specifications is considered compliant (e.g., a 100GBASE-ZR PMD operating at 90 km meets the operating range requirement of 2 m to 80 km). SuggestedRemedy Delete noted text Proposed Response Response Status O

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed Z/withdrawn SORT ORDER: Comment ID