Chief Editor's report

Tom Issenhuth, Huawei, P802.3ct Chief Editor

IEEE P802.3ct Task Force, Indianapolis, September 2019

Editorial team

Tom Issenhuth, Huawei

Chief Editor and Editor for Clause 156

Pete Anslow, Ciena

Editor for Clauses 00, 1, 30, 45, 78, 80, 82, 116, 119, Annex A

Steve Trowbridge, Nokia

• Editor for Clauses 152, 153, Annex 83C

Peter Stassar, Huawei

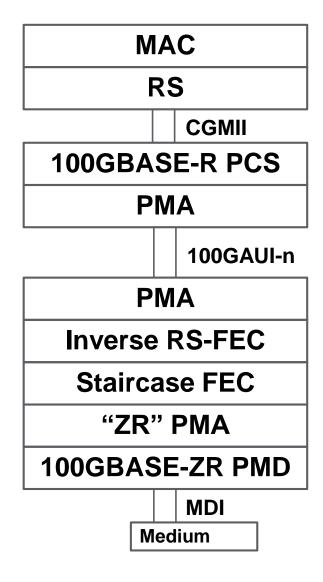
Editor for Clause 154

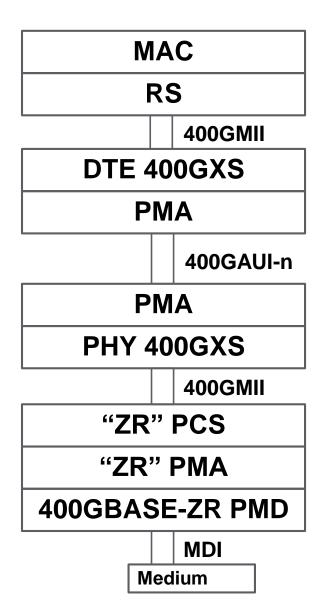
John DeAndrea, Finisar

• Editor for Clause 155

Introduction

The IEEE P802.3ct project has adopted baselines for:


- 100GBASE-ZR FEC and frame format on slides 9 to 16 of trowbridge_3cn_01a_0119
- Inverse RS-FEC sublayer on slide 7 of nicholl_3ct_01a_0319
- 400GBASE-ZR PCS/PMA in lyubomirsky_3cn_01b_0119
- 100GBASE-ZR PMD parameter list and corresponding values in slides 8, 9 and 11 of stassar_3ct_02_0719


And has adopted the following:

- DP-DQPSK modulation format for 100GBASE-ZR
- DP-16QAM modulation format for 400GBASE-ZR
- 400GBASE-ZR PMD parameter list

This presentation sets out the expected structure of the P802.3ct amendment.

Expected stacks

New clauses

Clause	Content	Baseline
152	Inverse RS-FEC sublayer	Baseline adopted
153	Staircase FEC and PMA for 100GBASE-ZR	Baseline adopted
154	PMD clause for 100GBASE-ZR	Baseline adopted
155	PCS (including FEC) and PMA for 400GBASE-ZR	Baseline adopted
156	PMD clause for 400GBASE-ZR	Need baseline

Amended clauses

Clause	Change	
1	Add new references, definitions, abbreviations	
30	Add new management objects / attributes	
45	Add new registers / bits	
78	Add new EEE fast wake PHYs	
80	Add new 100G PHY type	
82	Move G.709 location	
116	Add new 400G PHY type	
119	Move G.709 location	
Annex A	Add any new bibliography entries	
Annex 83C	Add new figures	

Draft 0.1 Preview

D0.1 has been uploaded to the 802.3ct private area

Contact John if anyone needs the password

Our intent is to give everyone visibility to this version of the draft

- The 100Gb clauses are well developed and included in the draft
- The 400G clauses do not have all the required adopted baselines and are not well developed so are they not included in the draft

Draft 0.2 will be created based on the outcome of the project split decision made by the task force

Overview of D0.1

Key Open Items for D0.1

Complete Skew budget

Delay budget for the SC-FEC

Clause 154:

- · Channel frequencies (channel plan).
- Skew constraints in 154.3.2.
- Signal detect level in 154.5.4
- Tables of optical parameter values:
 - Transmitter:
 - · Average channel output power (max)
 - Skew between the two polarizations (max)
 - Average launch power of OFF transmitter, each lane (max)
 - · Optical return loss tolerance (max)
 - Transmitter reflectance (max)
 - Receiver:
 - Damage threshold
 - Receiver reflectance (max)
 - Black Link:
 - · Fiber zero dispersion wavelength
 - Fiber dispersion slope (max) (S0)
 - Minimum optical return loss at TP2
 - Maximum discrete reflectance between TP2 and TP3
- Definition of test patterns for optical parameters
- Protocol implementation conformance statement (PICS)

Thanks!