Compliance Methodology for 400GBase-ZR Transceivers in 75GHz-spaced DWDM Links

Winston Way, NeoPhotonics

Tom Williams, Acacia

Mike Sluyski, Acacia

Eric Maniloff, Ciena

802.3cw

Nov 16, 2020

1

Supporters

- Binbin Guan, Microsoft
- Yawei Yin, Microsoft
- Atul Srivastava, NEL
- Mark Nowell, Cisco

OUTLINE

- Traditional and 802.3ct Optical Ethernet PHY link parameters
- Comparing different compliance methodologies
- Add 75GHz-spaced DWDM TX and Link Parameters for 802.3cw

Traditional Optical Ether PHY Link

- Channel parameters: optical loss, dispersion, reflectance
- <u>Transmitter parameters</u>: Output power, ER, OMA, TDECQ
- <u>Receiver parameters</u>: Sensitivity (OMA), stressed eyes
- <u>Compliance methodology</u>: Compliance testing defined for transmitter and receiver, not the channel. Network operator is responsible for ensuring channel is compliant

For clarity, only one direction of transmission is shown

Coherent DWDM Ethernet PHY Link (802.3ct)

- <u>Channel parameters</u>: OSNR penalty (max optical path penalty 3dB)
 - Inter-channel crosstalk and mux/demux filtering penalty were insignificant for 802.3ct 100GHz-spaced 27.9525 GBd signals
 - Other parameters such CD, PMD, PDL, SOP, etc., have been defined
- <u>Transmitter parameters</u>: Transmitter OSNR/SMSR, laser frequency offset, max freq excursion
 - Other parameters such IQ skew, IQ imbalance, quadrature error, and IQ offset have also been defined
- <u>Receiver parameters</u>: Received OSNR at a pre-FEC BER threshold, received optical power range
- <u>Compliance methodology</u>: Single channel compliant to the above three sets of parameters

What More to be Defined in 802.3cw in reference to 802.3ct?

- <u>Key difference</u>: Inter-channel crosstalk can be significant for 75GHzspaced 59.84 GBd signals. Need to define the OSNR penalty due to the inter-channel crosstalk and mux/demux filtering specifically.
- <u>Test Methodology</u>: Three consecutive 75GHz-spaced channels must be tested simultaneously, with the center channel as the DUT
- Define TX spectral mask?
- Define reference receiver?
- Define 64-ch 75GHz-spaced DWDM MUX and DEMUX?

Comparing Different Compliance Methodologies

Reference	IEEE contribution	TX (mask)	RX	MUX/DEMUX
1	Maniloff_3cw_01-200910	RRC α=0.39~0.43	Matched to TX	Vaguely defined
2	Zhang_3cw_01a_201116	Undefined	Sub-optimal reference receiver defined as $34GHz 5^{th}$ -order Butterworth based on TX RRC α =0.4	Defined
3	This contribution	RRC α=0.4	Sub-optimal arbitrary shape, but must meet OSNR penalty<1dB	Defined

<u>Comments on Ref. 1:</u> (a) Ideal matched TX/RX filter case cannot always be met, due to sub-optimal analog front-end or limited transmitter/receiver over-sampling rate; (b) Mux/Demux specs vaguely defined, leaving room to different MUX/DEMUX implementation in different systems, causing inter-op uncertainties.

<u>Comments on Ref. 2:</u> (a) Sub-optimal receiver is based on a defined transmitter spectral shape, in conflict with the assumption that a transmitter spectrum is undefined; (b) given a reference receiver, if the transmitter does not pass the performance criteria, one cannot tell it is due to the transmitter itself or its two neighbor aggressors.

Add 75GHz-spaced DWDM TX and Link Parameters for 802.3cw

Transmitter Specifications TX spectral mask upper limit at zero frequency shift¹ -3dB @ 30GHz, -10dB @ 37GHz, and -15dB @39.5GHz (OdB at center without considering any leakage carrier) (3 discrete points on RRC alpha=0.4); <-20dB floor TX spectral mask lower limit at zero frequency shift² -9dB from baud rate/2 out to the intercept of the RRC α =0.05 curve and then follow the RRC α = 0.05 curve TX output power stability³ \leq +/- 0.5dB Adjustable TX output power range \geq 5dB **MUX and DEMUX specifications** Filter shape 3rd-order Super-Gaussian 3dB bandwidth 70 ~ 76GHz Insertion loss \leq 6.5 dB Port-to-port insertion loss variation \leq 1.5dB Non-adjacent channel isolation ≥ 20dB **Receiver Specifications** ROSNR after back-to-back MUX and DEMUX $\leq 27 dB^4$

To control the channel-to-channel optical power variation³

¹Sluyski_cw_01a_200423

²Maniloff_cw_01_200910

³Power adjustment is included to allow channel equalization. The method of equalization is not specified.

 $^4\text{Back-to-back}$ OSNR without MUX and DEMUX is \leq 26dB. Note this may be included in path penalty.