SIGNAL_OK stability

In support of comments against IEEE 802.3ct D1.2

Comment #: 11, 17, 29, 32, 35

Leon Bruckman (Huawei)

References

- 100GBASE ZR Draft 802.3ct_D1p1.pdf, Private Area
- ITU-T G.709 Interfaces for the optical transport network
- ITU-T G.798 Characteristics of optical transport network hierarchy equipment functional blocks
- trowbridge_3cn_01a_0119.pdf, IEEE P802.3cn Task Force, Long Beach, March 2019
- bruckman_3ct_01a_200213, IEEE P802.3ct Task Force, teleconference February 13th, 2020
- bruckman_3ct_02a_200213, IEEE P802.3ct Task Force, teleconference February 13th, 2020
- bruckman _3ct _01_200312, IEEE P802.3ct Task Force, teleconference March 12th, 2020

General

- During the March 12th, 2020 Teleconference I presented a contribution related with the alignment process and indication behavior in D1.2:
 - bruckman_3ct_01_200312
- As a conclusion of the technical discussions during the Teleconference I added another option to handle the SIGNAL_OK stability issue.
- In this contribution I present this option.

Reminder:

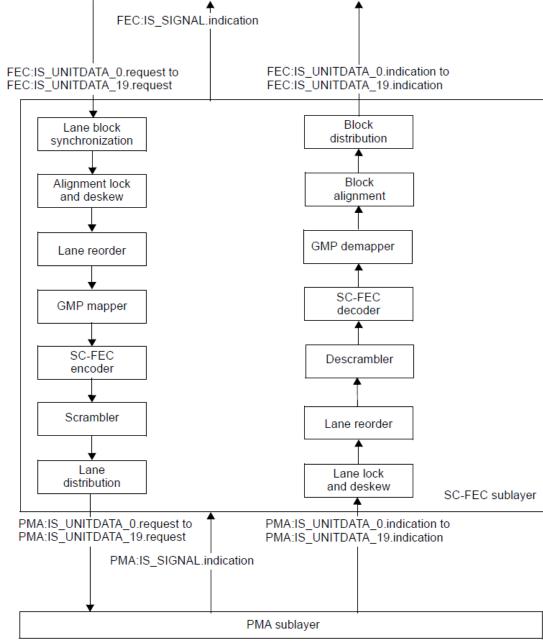


Figure 153-2—SC-FEC functional block diagram

SIGNAL_OK indication

- Instead of using the pre-FEC fec_align_status variable that is "noisy" use the rx_block_lock signal from Figure 82–12 Block lock state diagram.
 - Rx_block_lock is after-FEC
 - In any case it seems we need to use this indication since if rx_block_lock is FALSE we should set SIGBAL_OK to FAIL.

Change

 The SIGNAL_OK parameter of the FEC:IS_SIGNAL.indication primitive can take one of two values: OK or FAIL. The value is set to OK when the FEC receive function has identified codeword boundaries as indicated by fec_align_status rx_block_lock equal to true. That value is set to FAIL when the FEC receive function is unable to reliably establish codeword boundaries as indicated by fec_align_status-rx_block_lock is equal to false. When SIGNAL_OK is FAIL, the rx_bit parameters of the FEC:IS_UNITDATA_i.indication primitives are undefined.

Data flow stability

- Data flow shall be stable during the frequent loss of alignment events
- To achieve this the following changes are suggested (see details in bruckman_3ct_01_200312):
 - Use fas_in_counter instead of fas_counter, so that during a resynchronization the FAS location is retained until a new FAS location is identified by the synchronization state machine.
 - Note that if the synchronization loss was due to BER, the new FAS location will be equal to the previous one.
 - Do not allow bits to be discarded during the deskew process.