Proposed Procedure for Addressing 75GHz Spaced Channels in 400GBASE-ZR

Eric Maniloff, Ian Betty, Scott Kuntze

Ciena

802.3cw Sept 10, 2020

Overview

- Discuss procedure for Black Link Penalty allocations
- Focus on Crosstalk Penalty for 75GHz 400GBASE-ZR spaced applications
 - This is a followup to maniloff_3cw_01_200528
- Discuss filter and Tx spectral contributions to Interchannel Crosstalk penalty

Proposed Procedure for Addressing 75GHz Spaced Channels in 400GBASE-ZR

- 1) Agree that OSNR penalty allocations are required in 802.3cw for the following:
 - 1. Inter-channel CrossTalk Penalty
 - 2. Intra-channel Filter Penalty
- 2) Agree on the accounting of the current OSNR penalty allocations to determine available margins for (1)
 - 1. The Black link approach for 100G coherent in ITU-T G698.2 and 802.3ct has been used to date in applications where the OSNR Penalties << OSNR Margin. This is <u>not</u> the 400GBASE-ZR use case:
 - I would advocate that we explore a 0.5dB-1dB Inter-channel CrossTalk Penalty window for viability.
 - I would advocate that we should limit the Intra-channel Filter Penalty to <0.5dB
- Accept the Modem NSR XTalk calculation (maniloff_3cw_01_200528) as a viable framework for calculating (1.1)
 - 1) This calculation requires definition of the Tx Spectrum, the Mux/Demux Filter Attenuation Mask, and the assumption that the Rx Spectrum will adapt to match the Tx Spectrum.
 - 2) 26dB-29dB range for Modem NSR Interchannel XTalk bounds an OSNR penalty of 0.5dB-1dB.

Proposed Procedure for Addressing 75GHz Spaced Channels in 400GBASE-ZR (cont)

- 4) Agree we will define a Tx Spectrum Mask:
 - 1) Propose the Upper Mask limit be given as an ideal RRC curve from Baud/2 with a floor.
 - 2) Propose the Minimum Mask be given as an ideal RRC with Alpha=0.05.

- 1) The Mask shall include the filter center offsets from the ITU grid. Absorb the current Ripple Specification?
- 2) The *Minimum Attenuation Mask Limit with Floor* is bounded by (1.1), (4.1) and Tx channel power offset range
 - Current baseline specifies 4dB maximum range between transmitters
- 3) The *Maximum Attenuation Mask Limit* is bounded by (1.2) and (4.1).
- 4) The Tx Spectrum & Mux/Demux Filter Attenuation Mask will remove requirement for Interchannel crosstalk, which is in the FFS table in sluyski_3cw_01_200507.

802.3cw

H(f)

-3dB

Floor TBD

Min

Frequency [GHz]

Baud/2

100G Black Link Penalty allocations

- 100GBASE-ZR (802.3ct)
 - 16.5dB Rx OSNR tolerance
 - 3 dB Path Penalty
 - \rightarrow 19.5dB OSNR required after link

Line OSNR calculation assuming a simple additive noise model:

Tx Power	-8 dBm
Tx OSNR	35 dB
Mux Loss	9.5
Booster Amp Gain	24
Booster Amp Noise Figure	6 dB
Fiber Loss	24 dB
Pre Amp Gain	23 dB
Pre Amp NF	6 dB
Rx OSNR	28.6 dB

- G.698.2 (11/2018) DP-DQPSK optical specs (Table 8-7)
 - 16dB Rx OSNR tolerance
 - 5dB Path Penalty
 - \rightarrow 21dB OSNR required after link
 - ROADM applications

100G Applications	have excess margin	
-------------------	--------------------	--

Tx Power	-5dBm
Mux Loss	5.5dB
Span Launch Power	1dBm
Span Loss	16dB
# Spans	8
# ROADMs	6
ROADM Loss	13 dB
Amp Noise Figure	6dB
Rx OSNR	25.8 dB

(2) Procedure for adding OSNR penalty Allocations

- OSNR Tolerance: 26dB
 - Baseline spec, issenhuth_3cw_01_200611
- Line System Delivered OSNR?
- OIF 400ZR IA OSNR Penalty Allocations:
 - 0.5dB CD + IF XTalk
 - 0.5dB PMD
 - 0.5dB SOP
 - 1.3dB PDL
 - New Inter-channel Crosstalk
 - New Intra-channel Filter Penalty

We need to agree on a procedure to determine available margin, based on allocation for penalties using a black link methodology Line OSNR calculation assuming a simple additive noise model:

Tx Power	-10 dBm	-10 dBm
Tx OSNR	34 dB	Inf
Mux Loss	9.5	9.5
Booster Amp Gain	24	24
Booster Amp Noise Figure	6 dB	6 dB
Fiber Loss	24 dB	24 dB
Pre Amp Gain	23 dB	23 dB
Pre Amp NF	6 dB	6 dB
Rx OSNR	28.1 dB	29.4 dB

Tx Power	-10 dBm	-10 dBm
Tx OSNR	34 dB	Inf
Mux Loss	6.5 dB	6.5 dB
Booster Amp Gain	21 dB	21 dB
Booster Amp Noise Figure	6 dB	6 dB
Fiber Loss	24 dB	24 dB
Pre Amp Gain	23 dB	23 dB
Pre Amp NF	6 dB	6 dB
Rx OSNR	29 dB	30.7 dB

(3) Modem NSR XTalk Calculation-maniloff_3cw_01_200528

This calculation requires definition of the Tx Spectrum, the Mux/Demux Filter Attenuation Mask, and the assumption that the Rx Spectrum will adapt to match the Tx Spectrum.

0.39-0.43 Tx/Rx Alpha for 0.5dB-1dB Interchannel XTalk penalty with "Narrow WC" Filter in maniloff_3cw_01_200528

Options to Reduce XTalk and Increase Acceptable Alpha :

- Reduce Tx channel power offsets [currently 4dB for Tx power range specified in adopted baseline]
- Is the +/-3GHz used in these calculations sufficient for the maximum frequency offset of the Mux/Demux Filters?
- Tighten the "Narrow Filter" bandwidth.
- The +/-1.8GHz Tx/Rx laser offsets from ITU grid <u>should not be</u> touched

Note: Previously we defined super-gaussian filters using 20log. Moving forward we are going to align with the 10log definition used by filter manufacturers to simplify discussions. "The Narrow Filter" in maniloff_3cw_01_200528 has a 3dB bandwidth of 74GHz

(3) Modem NSR XTalk Calculation Update

- Here we show the Modem NSR Interchannel Crosstalk OSNR penalty as a function of a <u>3rd order super-gaussian filter BW</u> and the <u>ideal RRC</u> <u>Alpha of the Tx</u>. The Rx filter is assumed to <u>adapt</u> to match the Tx filter. Modem OSNR tolerance of 26dB.
- Required OSNR penalty budget can be read from these contour plots:
 - Tx channel power between channels should be better controlled. Contour plots are shown for Δ4dB, Δ2dB and Δ1dB nearest neighbour Tx channel power uniformity.
 - Based on recent discussions with multiple interested companies we have increased the maximum frequency offset between the Mux/Demux Filters from +/-3GHz to +/-4GHz.
 - 3. The +/-1.8GHz maximum laser frequency offset from ITU grid has not been changed
- Note: Tx/Rx Alpha <=0.3 has <0.1dB penalty (negligible) for any 3rd order filter BW as concluded in maniloff_3cw_01_200528

• We propose using this approach to specify the Tx spectrum and filters for the 400GBASE-ZR specification in 802.3cw

Thanks!