Impact of Tx Overshoot on Link Performance and TDECQ

Roberto Rodes, II-VI

Vipul Bhatt, II-VI

March 17, 2020

1

Introduction

802.3cu draft 2.0 introduced overshoot transmitter spec to protect receivers from harmful transmitters

During March ad-hoc meeting we presented many experimental data analyzing overshoot vs Rx sensitivity, error floor and overload http://www.ieee802.org/3/cu/public/cu/adhoc/cu/archive/rodes_3cu/adhoc/030520_v2.pdf

□We received comments about clarification of our recommendation

This presentation tries to clarify our recommendation based on the previously presented data

Achieving Robust Transmitter Compliance

1. Low-OMA region

BER

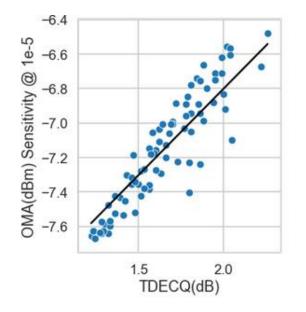
Pre-emphasis *improves* sensitivity. Negative Ceq *improves* transceiver yield. Use TDECQ for compliance.

2. Mid-OMA region

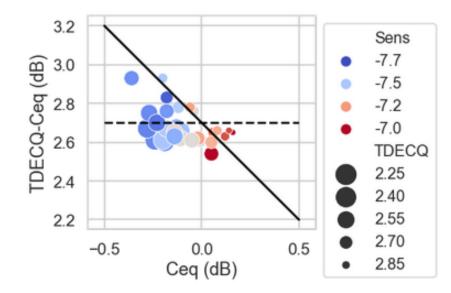
Overshoot can limit TIA linearity. Use a *relative* overshoot limit for compliance. 3. High-OMA region

To protect against overload, use an *absolute* overshoot limit for compliance.

OMA

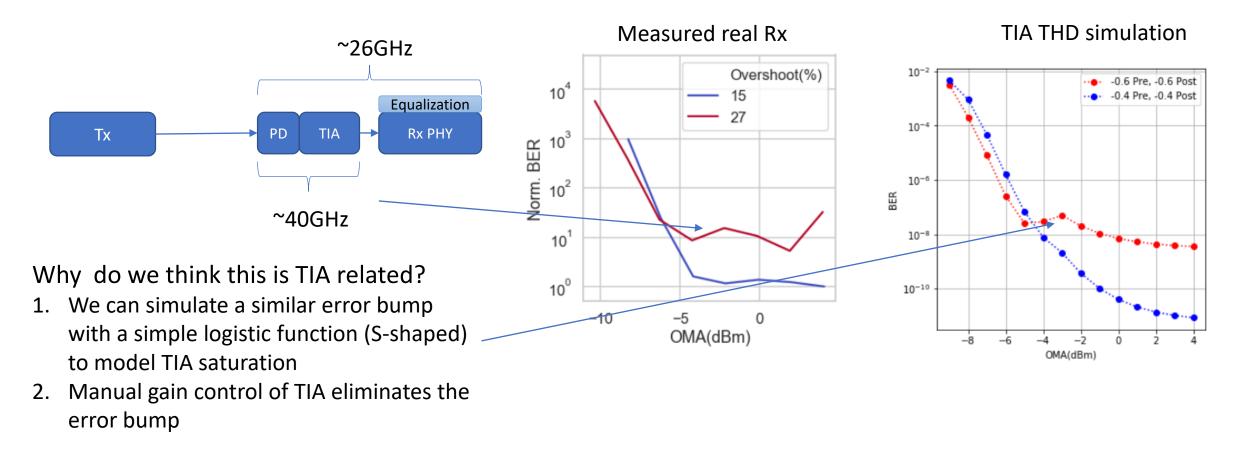

Low-OMA region: use TDECQ for compliance

Why TDECQ?


It is meant to simulate sensitivity. Instead of reducing Tx signal until the Rx noise limits BER to 2.4e-4, we add simulated noise to a fixed Tx signal until we hit the same BER.

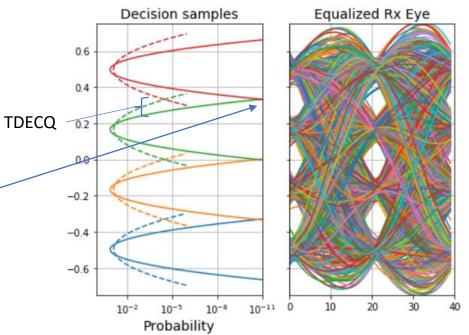
Is TDECQ reliable?

Yes. TDECQ vs Sensitivity shows decent agreement with 1:1 linear fit


Does TDECQ-10log(Ceq) help, or could harm? Transmitters could fail TDECQ-10log(Ceq) even with good sensitivity

Mid-OMA region: use overshoot for compliance

Why control relative overshoot?


Overshoot triggers TIA nonlinearities that limit Error floor

Mid-OMA region: use relative overshoot for compliance

Why not use TDECQ-10*log(Ceq) to control error floor?

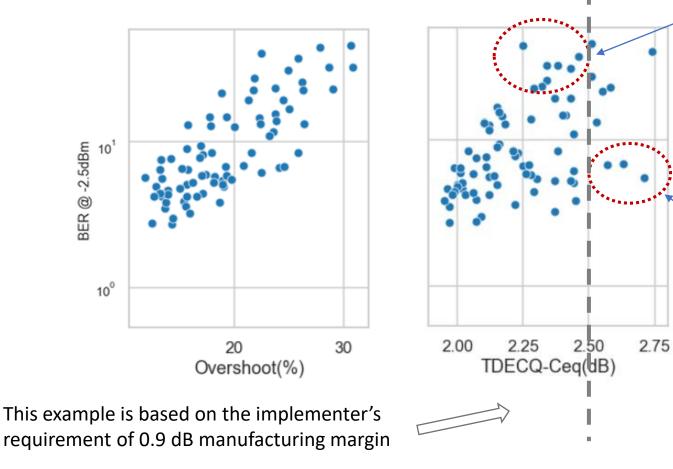
- TDECQ works adding noise to hit 2.4e-4 BER(dashed line). We shouldn't expect the same spec to predict BER performance at 1e-7, 1e-8 or lower.
- □ Error floor is not about how much noise you can add (like TDECQ), but about how low your error probability is
- □ "What should the spec **NOT** do:
 - □ Fail devices that would work in the field (yield reduction and cost increase)
 - Pass devices that would not work in the field (unhappy customers and returns that will pass again)" by Peter Stassar. Next 2 slides shows data on this.

Mid-OMA region: use overshoot for compliance

Why not use TDECQ-10*log(Ceq) for controlling error floor?

531.6415UI			531.6415 UI		
•	e				
and the second secon					
531.6415 UI	TDECQ[1C]		531.6415 UI	TDECQ[1D]	
				and the second	
	b .				e e
	1				
ti attanette					
and the second se	Contraction of the local diversion of the loc				
Daguitta		(
			<u> </u>		
Results	F1 TDECQ	F2 T	DECQ	3 TDECQ	F4
TDECQ 2.00 dB	F1 TDECQ	F2 T 1.72 dB	DECQ [2.03 dB	3 TDECQ 3.35 dB	F4
TDECQ 2.00 dB Ceq	F1 Ceq	1.72 dB	2.03 dB Ceq	3.35 dB 3 Ceq	F4 F4
TDECQ 2.00 dB Ceq -0.53 dB	E1 Ceq	1.72 dB F2 C	2.03 dB Ceq -0.56 dB	3.35 dB Ceq -0.12 dB	F4
TDECQ 2.00 dB Ceq -0.53 dB Duter ER	F1 Ceq F1 Outer ER	1.72 dB F2 C -0.68 dB F2 C	2.03 dB Ceq F -0.56 dB Duter ER	3.35 dB Ceq -0.12 dB 3 Outer ER	
TDECQ 2.00 dB Ceq	F1 Ceq F1 Outer ER	1.72 dB (2) C -0.68 dB (2) C (4.119 dB	2.03 dB Ceq F -0.56 dB Duter ER F 4.183 dB	3.35 dB Ceq -0.12 dB	F4

Measurements:


Lane	TDECQ(dB)	Ceq(dB)	TDECQ-Ceq(dB)	error floor
1	2.00	-0.53	2.53	1.06E-06
2	1.72	-0.68	2.4	2.98E-07
3	2.03	-0.56	2.59	4.15E-07
4	3.35	-0.12	3.47	7.27E-09

Purposely modified FR4 module to show:

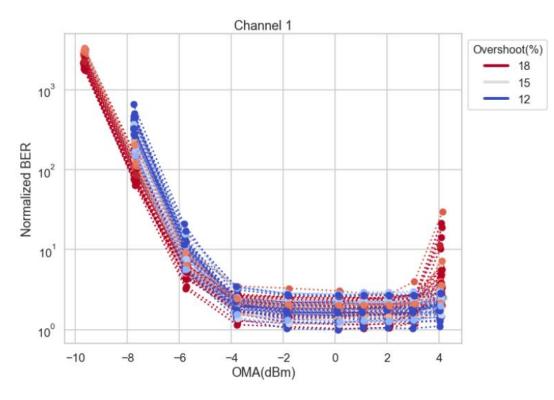
- TDECQ-10log(Ceq) spec would fail the Tx that has the best error floor (by more than 1 decade)
- □ TDECQ-10log(Ceq) spec will pass transmitters that will show very poor error floor in the field

Mid-OMA region: use relative overshoot for compliance

Data presented on March ad-hoc meeting shows stronger correlation of error floor with overshoot

Passing devices that would 'not work' in the field

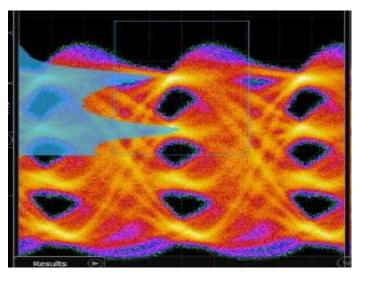
	TDECQ	Ceq	ER	TDECQ-Ceq
168	1.61	-0.64	4.212	2.25
161	1.70	-0.64	4.217	2.34
214	1.85	-0.53	4.231	2.38
162	1.82	-0.52	4.236	2.34
169	1.78	-0.54	4.232	2.32

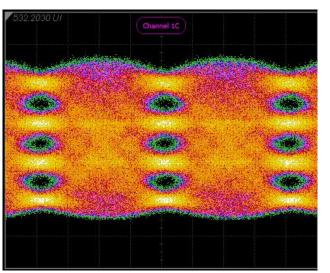

Failing devices that would work in the field

	TDECQ	Ceq	ER	TDECQ-Ceq
230	2.39	-0.32	4.256	2.71
216	2.07	-0.50	4.242	2.57
223	2.24	-0.39	4.274	2.63

High-OMA region: absolute overshoot for compliance

Why absolute overshoot?


Transmitters with maximum allowed overshoot(%) can still overload TIA when in conjunction with maximum Tx OMA spec.


Why not just use a tighter relative overshoot (%) spec instead? Protecting Rx at overload with overshoot(%) would require a much tighter spec value. This would harm sensitivity for all Transmitters just to protect from the few with high Tx OMA

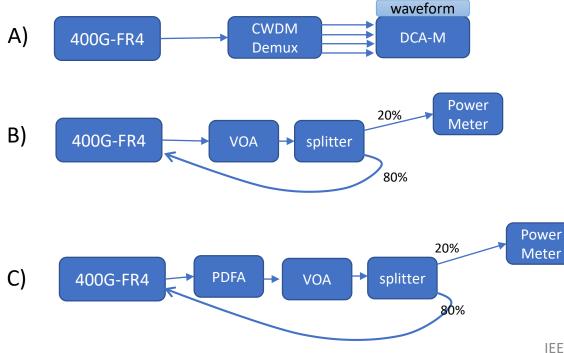
Overshoot measurement guidelines

- □ 50G PAM4 DML-based and 100G PAM4 EML-based modules show overshoot on different part of the UI.
- U We recommend overshoot measurement over the whole UI to cover all Tx types
- □ Maximum overshoot should be satisfied at TP2 and TP3:
 - Absolute overshoot will be worst at TP2, Relative overshoot could be worst at TP3 (to account for dispersion)
- □ Eye Mode SSPRQ vs Oscilloscope Mode Square wave
 - □ Square wave more fundamental, SSPRQ more practical
- □ For further investigation

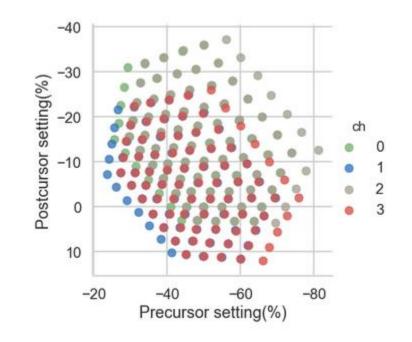
50G PAM4 DML

100G PAM4 EML

IEEE P802.3cu

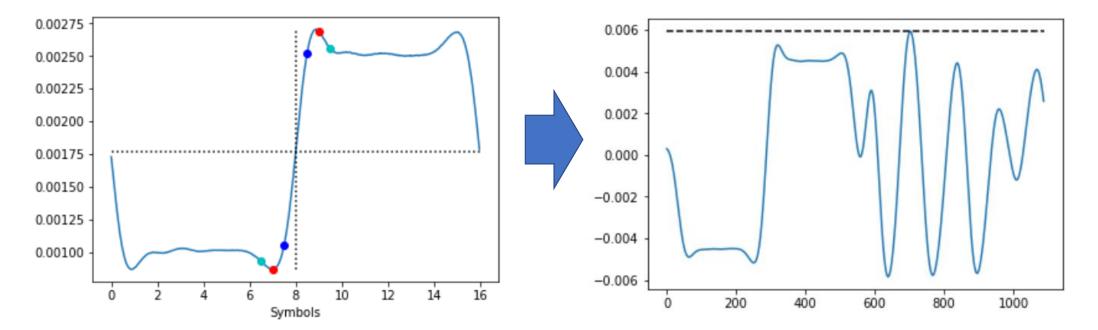

Summary

- Keep TDECQ for what it is: guarantee Sensitivity
- Decouple error floor & overload protection from TDECQ equalization
- Set maximum 22% overshoot specs to protect Rx error floor
- Set maximum 4.5 dBm absolute overshoot spec to protect Rx at overload
- Do not impose (TDECQ 10logCeq) constraint
 - It results in over-rejection of transmitters, which will raise cost
 - A better way of ensuring transmitter compliance is thru overshoot control


Backup

Analysis Setup

- In setup A, transmitter is connected to DCA to capture square wave for offline overshoot, and to measure TDECQ (TECQ) and Ceq with SSPRQ
- In Setup B, transmitter is connected to receiver for BER waterfall measurements
- In Setup C, same than previous setup with the addition of a PDFA to cover overload powers. Single lane measurement


- Tx Postcursor and precursors settings on a 400G module are swept to generate 79 different values of overshoot per channel
- Main tap is changed accordantly to maintain FIR taps sum value constant for minimal ER variation

Tx parameters – overshoot extraction

- Overshoot values were extracted by offline processing a square wave.
- Independent pre & post for rising and falling edge were extracted. However, only maximum value was used on this analysis

- □ The impulse response is calculated from the step response
- The overshoot was measured from the maximum value of the convolution of a SSPRQ sequence with the impulse response

