Comment Type: E Comment Status: A bucket

Missing period at the end of the second sentence.

SuggestedRemedy
Replace, "(Super-PON)" with, "(Super-PON)."

Response
Accept.

Response Status: C

Comment Type: TR Comment Status: A

The 400GBASE-ZR PCS should be a separate MMD from the PMA and PMD. This allows for the re-use of already defined MDIO registers in clause 45.

SuggestedRemedy
In Figure 120A-9 change the curly bracket for MMD1 to start at the divider between PCS and PMA. Add the caption MMD3 next to the PCS.

Response
Accept.

Response Status: C

Comment Type: E Comment Status: A bucket

Follow style for clause headers

SuggestedRemedy
Replace, "Use of Blocks" with, "Use of blocks"

Response
Accept.

Response Status: C

Comment Type: E Comment Status: A bucket

Follow style for clause headers

SuggestedRemedy
Replace, "GMP Mapper" with, "GMP mapper"

Response
Accept.

Response Status: C

Comment Type: E Comment Status: A bucket

Follow style for clause headers

SuggestedRemedy
Replace, "Alignment Marker (AM) and Pad insertion" with, "Alignment Marker (AM) and Pad insertion"

Response
Accept.

Response Status: C

Comment Type: E Comment Status: A bucket

Follow style for clause headers

SuggestedRemedy
Replace, "Functional Block Diagram" with, "Functional block diagram"

Response
Accept.

Response Status: C
The details of the overhead are rather complicated, and the description may not be clear enough for a reader who is unfamiliar with the details of ITU-T FlexO technology on which all of this is based. The 400GBASE-ZR frame is based on a FlexO-4 frame, which is formed by interleaving four ~100G FlexO frame structures. The clauses about AM and Pad describe the fields after this interleaving is done, for simplicity. The overhead clause is sort of a hybrid of trying to describe the 1280-bit field that results from interleaving four 320-bit fields, but it gets complicated by the fact that all the overhead is in the first ~100G structure that uses a 4-frame multiframe. Since most readers probably are not familiar with the details of FlexO, it is probably better to introduce the overhead in terms of a 40-byte frame structure and 4-frame multiframe, and then have a separate subclause to explain how the overhead is mapped into the 400GBASE-ZR overhead field.

Suggested Remedy

Change the title of 155.2.4.5 to "Overhead (OH)"

Add text before Figure 155-4 as follows:
The 400GBASE-ZR overhead is a 40-byte frame structure that uses a four-frame multiframe, as shown in Figure 155-4 and described in 155.2.4.5.1 through 155.2.4.5.3.

Change the text at the top of figure 155-4 from "bytes of the first 320-bit OH field" to "byte number"

Delete the paragraph after the figure and insert new subclause 155.2.4.5.4 as follows:

155.2.4.5.4 Mapping into the 400GBASE-ZR frame

The 400GBASE-ZR frame contains a 1280-bit overhead field. This field is logically composed of four 320-bit structures. The 40-byte overhead frame described in 155.2.4.5 is the first such 320-bit structure. The second, third, and fourth 320-bit structures are all zeros. The four 320-bit structures are 10-bit interleaved to form the 1280-bit overhead field.

Assuming this general direction is agreeable, subsequent comments address additional changes to 155.2.4.5.x that would also be needed.

Response

ACCEPT IN PRINCIPLE.

Change the title of 155.2.4.5 to "Overhead (OH)"

Add text before Figure 155-4 as follows:
The 400GBASE-ZR overhead is a 40-byte frame structure that uses a four-frame multiframe, as shown in Figure 155-4 and described in 155.2.4.5.1 through 155.2.4.5.4.

Change the text at the top of figure 155-4 from "bytes of the first 320-bit OH field" to "byte number"

Delete the first and last paragraphs of 155.2.4.5.2.

Suggested Remedy

Replace the text of 155.2.4.5.1 with:
The MFAS is in the first byte of the overhead frame. It is wrapping counter that is incremented each frame to provide a 256-frame multi-frame sequence as defined by ITU-T G.709.1 Clause 9.2.1.

Response

ACCEPT.
It is better to describe the STAT field independently of the 320-bit FlexO instances, as noted in an earlier comment.

SuggestedRemedy

Change the first sentence of the second paragraph of 155.2.4.5.2 from: The status overhead byte is present in every frame, but only carried in the first of the four 320-bit OH instances.

to:

The status overhead byte provides status information about the 400GBASE-ZR link.

ACCEPT.

Lewis, David
Lumentum

There needs to be clarification of how the LDI fields translate to tx_am_sf<2:0> when there is an adjacent PHY 400GXS. The connection may be made via MDIO registers or in an integrated implementation as a direct hardware connection.

SuggestedRemedy

Add a paragraph: "If there is an adjacent PHY 400GXS sublayer, then the value of RD in STAT<7> is equal to the value of rx_am_sf<2> from the 400GXS sublayer, and LD in STAT<8> is equal to the value of rx_am_sf<1> from the 400GXS sublayer. If there is not a 400GXS sublayer adjacent, meaning that the 400GBASE-ZR PCS is connected to a MAC-RS, then the value of RD in STAT<7> is set to the value of LD in STAT<8> of the received status byte in the receive direction of the 400GBASE-ZR PCS, and the value of LD in STAT<8> in the transmit direction is set to 0."

ACCEPT IN PRINCIPLE.

Add two new paragraphs at the end of 155.2.4.5.2:

"If there is an adjacent PHY 400GXS sublayer, then the value of RD in STAT<7> is equal to the value of rx_am_sf<2> from the 400GXS sublayer, and LD in STAT<8> is equal to the value of rx_am_sf<1> from the 400GXS sublayer.

If there is not a 400GXS sublayer adjacent, meaning that the 400GBASE-ZR PCS is connected to a MAC-RS, then the value of RD in STAT<7> is set to the value of LD in STAT<8> of the received status byte in the receive direction of the 400GBASE-ZR PCS, and the value of LD in STAT<8> in the transmit direction is set to 0."

Issenhuth, Tom
Huawei

Incorrect usage of CRC-32 as CRC32 is used throughout the 802.3 revision D3.0 draft.

SuggestedRemedy

To keep alignment with the new 802.3 draft standard, change CRC32 to CRC32 throughout the draft

ACCEPT.
IEEE P802.3cw D1.3 400 Gb/s over DWDM systems 4th Task Force review comments

Cl 155 SC 155.2.4.7 P 43 L 49 # 6
Maguire, Valerie The Siemon Company

Comment Type: E Comment Status: A bucket
Follow style for clause headers

Suggested Remedy:
Replace, "400GBASE-ZR Frame to SC-FEC Adaptation" with, "400GBASE-ZR frame to SC-FEC adaptation"

Response: Response Status: C ACCEPT.

Cl 155 SC 155.2.4.8 P 46 L 1 # 7
Maguire, Valerie The Siemon Company

Comment Type: E Comment Status: A bucket
Follow style for clause headers

Suggested Remedy:
Replace, "Pad Insertion" with, "Pad insertion"

Response: Response Status: C ACCEPT.

Cl 155 SC 155.2.4.9 P 46 L 7 # 8
Maguire, Valerie The Siemon Company

Comment Type: E Comment Status: A bucket
Follow style for clause headers

Suggested Remedy:
Replace, "Frame Synchronous Scrambler" with, "Frame synchronous scrambler"

Response: Response Status: C ACCEPT.

Cl 155 SC 155.2.5.7 P 50 L 17 # 26
Huber, Tom Nokia

Comment Type: T Comment Status: A Overhead
Assuming the earlier comment regarding the description of overhead is agreed, it would be beneficial to have some text explaining how the 40-byte overhead frame is recovered from the 1280-bit field (i.e. the inverse of proposed new clause 155.2.4.5.4)

Suggested Remedy:
Insert a new paragraph at the end of 155.2.5.7 as follows:
The 400GBASE-ZR overhead is recovered from the 1280-bit overhead field by 10-bit de-interleaving the four 320-bit structures. The 40-byte overhead frame is the first 320-bit structure.

Response: Response Status: C ACCEPT.

Cl 155 SC 155.2.5.7.1 P 50 L 28 # 28
Huber, Tom Nokia

Comment Type: T Comment Status: A Overhead
Assuming the earlier comment regarding the description of the overhead is agreed, the text at the top of the figure should not refer to the 320-bit OH field.

Suggested Remedy:
Change text to say "byte numbers"

Response: Response Status: C ACCEPT IN PRINCIPLE.

Change the text at the top of Figure 155-9 from:
"bytes of the 320-bit OH field"
to:
"byte numbers"
The byte numbering in figure 155-9 is different from that in figure 155-5. For consistency they should be the same.

Suggested Remedy
Decide on either 0-based or 1-based byte numbering (based on whatever is most prevalent in the rest of 802.3) and change whichever figure needs to be changed.

ACCEPT IN PRINCIPLE.
Change to 0-based numbering for Figure 155-9, the same as Figure 155-4, with editorial license.

There needs to be clarification of how the LDI fields translate to rx_am_sf<2:0> when there is an adjacent PHY 400GXS. The connection may be made via MDIO registers or in an integrated implementation as a direct hardware connection.

Suggested Remedy
Add a paragraph: "If there is an adjacent PHY 400GXS sublayer, then the value of RD in the received STAT<7> is passed to tx_am_sf<2> in the transmit direction of the 400GXS sublayer, and LD in STAT<8> is passed to tx_am_sf<1> in the transmit direction of the 400GXS sublayer. If there is not a 400GXS sublayer adjacent, meaning that the 400GBASE-ZR PCS is connected to a MAC-RS, then the value of RD in ST<7> is passed to the DTE management entity to indicate a remote degrade event, and LD in the received 400GXS sublayer is connected to a MAC-RS, then the value of RD in STAT<8> is passed to the RD bit in STAT<7> in the transmit direction is of the 400GBASE-ZR PCS.

ACCEPT IN PRINCIPLE.
Add two new paragraphs at the end of 155.2.5.7.2:

"If there is an adjacent PHY 400GXS sublayer, then the value of RD in the received STAT<7> is passed to tx_am_sf<2> in the transmit direction of the 400GXS sublayer, and LD in STAT<8> is passed to tx_am_sf<1> in the transmit direction of the 400GXS sublayer.

If there is not a 400GXS sublayer adjacent, meaning that the 400GBASE-ZR PCS is connected to a MAC-RS, then the value of RD in STAT<7> is passed to the DTE management entity to indicate a remote degrade event, and LD in the received STAT<8> is passed to the RD bit in STAT<7> in the transmit direction is of the 400GBASE-ZR PCS."
<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.5.7.2</td>
<td>51</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Huber, Tom</td>
<td>Nokia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>Overhead</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Based on the comment to remove some receiver-specific text from the description of link status monitoring overhead in the transmitter, some additional text is needed here.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Remedy

Add the following at the end of the subclause:

The 400GBASE-ZR PCS provides detection and signaling of link degrade for use by network equipment with re-route capabilities. Pre-FEC bit error ratio monitors within the SC-FEC decoder are used to detect and indicate link degrade at the 400GBASE-ZR optical link.

In the case of a DSP framing or 400GBASE-ZR frame or multi-frame loss, the PCS receive path inserts a stream of 257B blocks carrying LF ordered sets.

Response

Response Status C

ACCEPT IN PRINCIPLE.

Add the following at the end of the 155.2.5.7.2:

"The 400GBASE-ZR PCS provides detection and signaling of link degrade for use by network equipment with re-route capabilities. Pre-FEC bit error ratio monitors within the SC-FEC decoder are used to detect and indicate link degrade at the 400GBASE-ZR optical link.

In the case of a DSP framing or 400GBASE-ZR frame or multi-frame loss, the PCS receive path inserts a stream of 257B blocks carrying LF ordered sets."

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.4.2.1</td>
<td>62</td>
<td>34</td>
<td>32</td>
</tr>
<tr>
<td>Huber, Tom</td>
<td>Nokia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>Variables</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| There is inconsistent sentence structure in the description of the variables - some begin with "A Boolean variable.", while others omit begin with "Boolean variable.". Those that describe non-Boolean variables all begin with "A variable."

Suggested Remedy

Change the sentences that begin with "Boolean variable." to begin with "A Boolean variable ."

Response

Response Status C

ACCEPT IN PRINCIPLE.

Refer to comment 31.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.4.2.1</td>
<td>63</td>
<td>14</td>
<td>36</td>
</tr>
<tr>
<td>Issenhuth, Tom</td>
<td>Huawei</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment Type</td>
<td>Comment Status</td>
<td>TBDs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| TBD not in magenta. There is one more case in 155.4.2.1, 3 cases in 155.6 and multiple cases in 156.10.

Suggested Remedy

Change color of TBDs to magenta

Response

Response Status C

ACCEPT IN PRINCIPLE.

Search for all TBDs and change to magenta as necessary.

Variable pma_align_status appears to be Boolean, so it should be described as such.

Suggested Remedy

Change "A variable." to "A Boolean variable."

Response

Response Status C

ACCEPT IN PRINCIPLE.

Replace all descriptions starting "Boolean variable..." with "A boolean variable."
Since the description of the LDI field now identifies specific bit positions, it would be more clear to state that _rx_local_degraded_ is true when the receiver detects the value 1 in the LD bit of the STAT field (which is actually LDI<2>, per figure 155-4).

Suggested Remedy

Change the first two sentences from:

Boolean variable that is asserted true when the receiver detects LDI<1> in the STAT byte of two consecutive 400GBASE-ZR frames. It is deasserted when LDI<1> is deasserted for two consecutive frame periods.

to:

A Boolean variable that is asserted true when the receiver detects the value 1 in the LD bit of the STAT byte of two consecutive 400GBASE-ZR frames. It is deasserted when the value 0 is detected in the LD bit for two consecutive frames.

Response Response Status C

ACCEPT.

Since the description of the LDI field now identifies specific bit positions, it would be more clear to state that _rx_rm_degraded_ is true when the receiver detects the value 1 in the RD bit of the STAT field (which is actually LDI<1>, per figure 155-4).

Suggested Remedy

Change the first two sentences from:

Boolean variable that is asserted true when the receiver detects LDI<2> in the STAT byte of two consecutive 400GBASE-ZR frames. It is deasserted when LDI<2> is deasserted for two consecutive frame periods.

to:

A Boolean variable that is asserted true when the receiver detects the value 1 in the RD bit of the STAT byte of two consecutive 400GBASE-ZR frames. It is deasserted when the value 0 is detected in the RD bit for two consecutive frames.

Response Response Status C

ACCEPT.

It seems like this process should be predicated on PMA alignment being achieved - there's no point in looking for the PCS AMs if the PMA is not aligned.

Suggested Remedy

Modify the output of LOCK_INIT from UCT to pma_align_status, so that the process of aligning the PCS AMs doesn't start until the PMA alignment is complete.

Response Response Status C

ACCEPT IN PRINCIPLE.

For the LOCK_INIT state, change the output transition condition from "UCT" to "pma_align_status".

Incorrect use of C-FEC, should be CFEC as stated in 1.5.

Suggested Remedy

Change C-FEC to CFEC

Response Response Status C

ACCEPT.

Missing cross reference to 156.9

Suggested Remedy

Add cross reference

Response Response Status C

ACCEPT.
Comment Type: E
Comment Status: A
Suggested Remedy: Add cross reference to 156.9

Response:
Response Status: C

ACCEPT.

Comment Type: E
Comment Status: A
Suggested Remedy: Add abbreviation to 1.5 or fully spell out abbreviations

Response:
Response Status: C

ACCEPT IN PRINCIPLE.

See response to comment 40.

Comment Type: E
Comment Status: A
Suggested Remedy: Follow style for clause headers

Response:
Response Status: C

ACCEPT.

See response to comment 40.
IEEE P802.3cw D1.3 400 Gb/s over DWDM systems 4th Task Force review comments

Cl 156 SC 156.10.1.1 P 94 L 20 # 11
Maguire, Valerie The Siemon Company
Comment Type E Comment Status A bucket
Follow style for clause headers
SuggestedRemedy
Replace, "Calibrated Coherent Receiver" with, "Calibrated coherent receiver"
Response Response Status C
ACCEPT.

Cl 156 SC 156.10.1.2 P 95 L 2 # 12
Maguire, Valerie The Siemon Company
Comment Type E Comment Status A bucket
Follow style for clause headers
SuggestedRemedy
Replace, "Offline Digital Signal Processing" with, "Offline digital signal processing"
Response Response Status C
ACCEPT.

Cl 156 SC 156.10.1.2.1 P 95 L 25 # 13
Maguire, Valerie The Siemon Company
Comment Type E Comment Status A bucket
Follow style for clause headers
SuggestedRemedy
Replace, "Polarization Demux" with, "Polarization demux"
Response Response Status C
ACCEPT.

Cl 156 SC 156.10.1.2.2 P 95 L 31 # 14
Maguire, Valerie The Siemon Company
Comment Type E Comment Status A bucket
Follow style for clause headers
SuggestedRemedy
Replace, "Clock and Frequency Offset Recovery" with, "Clock and frequency offset recovery"
Response Response Status C
ACCEPT.

Cl 156 SC 156.13.4.1 P 101 L 39 # 44
Issenhuth, Tom Huawei
Comment Type E Comment Status A bucket
Value/Comment shown as "Meets BER specified in 156.1.1"
SuggestedRemedy
Change "in 156.1.1" to "in 156.1.1"
Response Response Status C
ACCEPT.
Comment Type: E

Comment Status: A

Missing subclause cross reference for OM1

Suggested Remedy:
Add cross reference

Response: ACCEPT.

Response Status: C