IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Nicholl, Gary
Cisco Systems

Comment Type E Comment Status A
I am not sure what the "LDI<0:2>" at the bottom of the figure is referring to ? Is it supposed to indicate that LDI<0> corresponds to STAT<0>, LDI<1> corresponds to STAT<6>, etc ?

SuggestedRemedy
Please clarify, and if my understanding in the comment is correct then perhaps move the "LDI<0:2>" text to make it clear it is referring to STAT<5:7>.

Also clean up some of the other formatting in Figure 155-4, eg the "JC" bytes are not aligned under Byte number 4 and 5.

Response Response Status C
ACCEPT IN PRINCIPLE.

Clean up Figure 155-4 to align JC bytes correctly. Delete LDI<0:2> since it causes the same bits to have 2 names. Check that only LD, and RD are used in text and correct as needed.

Comment Type E Comment Status A
Figure 155-9. Should this figure contain a breakout to detail the format of the STAT byte, as is done in Figure 155-4 in section 155.2.4.5 ?

SuggestedRemedy
Add breakout of STAT byte as done in Figure 155-4.

Response Response Status C
ACCEPT IN PRINCIPLE.

Add breakout of STAT to Figure 155-9 as per Figure 155-4 but with the other modifications made there in response to comment #1.

Comment Type E Comment Status A
"...400GBASE-ZR PMA (155)". I believe the correct format when referencing another clause is "see Clause X", so the text above should probably be" ...400GBASE-ZR PMA (see Clause 155)". I believe there is a cross-reference command in Frame Maker to insert a clause cross-reference.

SuggestedRemedy
Please use the correct format (according to the style manual) when cross-referencing another Clause. Review the rest of Clause 156 for similar issues, and fix where necessary.

Response Response Status C
ACCEPT IN PRINCIPLE.

Change existing cross reference from "(155)" to "(Clause 155)" and correct any other cross reference formatting issues throughout the document.
IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Comment 5

<table>
<thead>
<tr>
<th>CI</th>
<th>156</th>
<th>SC 156.3.2</th>
<th>P 77</th>
<th>L 41</th>
<th># 5</th>
</tr>
</thead>
</table>

Nicholl, Gary Cisco Systems

Comment Type: T **Comment Status**: A

The first paragraph refers to "FEC lanes". This appears to be the only two reference to "FEC lanes" in the whole draft. There is also no separate FEC Sublayer in this draft, and Clause 155 only calls out a 400GBASE-ZR PCS. This appears to be similar as to what was done in Clause 119, in which case there are no "FEC lanes" and only "PCS lanes" (as the PCS includes the FEC).

It appears that the current wording might have been copied from 802.3ct, where there is a separate FEC sub-layer and "FEC lanes" is the correct terminology.

Suggested Remedy

In the first paragraph of 156.3.2, replace "FEC lanes" with "PCS lanes". Another solution would be go with the approach adopted in the equivalent section in Clause 122, and replace "FEC lanes" with "lanes".

Response **Response Status**: C

ACCEPT IN PRINCIPLE.

Replace "FEC lanes" with "lanes".

Comment 6

<table>
<thead>
<tr>
<th>CI</th>
<th>156</th>
<th>SC 156.5.4</th>
<th>P 80</th>
<th>L 4</th>
<th># 6</th>
</tr>
</thead>
</table>

Nicholl, Gary Cisco Systems

Comment Type: E **Comment Status**: A

The second sentence refers to a "CFEC sublayer" and then references section 155.2.1. There is no separate "FEC sub-layer" in this draft. There is only the PCS sublayer defined in Clause 155, which happens to include a CFEC.

Suggested Remedy

Change: "The presence of a valid signal is determined only by the CFEC sublayer (see 155.2.1)" To: "The presence of a valid signal is determined only by the PCS sublayer (see 155.2.1)"

Response **Response Status**: C

ACCEPT IN PRINCIPLE.

Comment 7

<table>
<thead>
<tr>
<th>CI</th>
<th>156</th>
<th>SC 156.9.1</th>
<th>P 88</th>
<th>L 38</th>
<th># 7</th>
</tr>
</thead>
</table>

Nicholl, Gary Cisco Systems

Comment Type: T **Comment Status**: R

Table 156-11. Should the pattern called out in the first three rows of this table be "400GBASE-ZR" and not "400GBASE-R" (see Clause 155 and Figure 155-1) ?

Suggested Remedy

Replace "400GBASE-R" with "400GBASE-ZR" in the first three rows of Table 156-11.

Response **Response Status**: C

REJECT.

Use of x00GBASE-R is consistent with 802.3ct and 802.3cu.
IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Comment ID: 13 Page 3 of 13

Cl 156 SC 156.10.1 P 93 L 45 # 9
Nicholl, Gary Cisco Systems
Comment Type T Comment Status A

The text tells you to connect the DP-16QAM transmitter to the "constellation analyzer" as shown in 156-6. However Figure 156-6 shows the DP-16QAM transmitter being connected to an "EVM reference receiver" and not a "constellation analyzer".

SuggestedRemedy
Change the second sentence in 156.10.1 from:
"Connect the 400 Gb/s DP-16QAM transmitter and constellation analyzer using a single-mode fiber patch cord between 2 m and 5 m in length."
To:
"Connect the 400 Gb/s DP-16QAM transmitter to the EVM reference receiver using a single-mode fiber patch cord between 2 m and 5 m in length."

Response Response Status C
ACCEPT IN PRINCIPLE.

Response Status C

Cl 156 SC 156.1 P 75 L 48 # 11
Issenhuth, Tom Huawei
Comment Type E Comment Status A

Text reads "introduced in 116", missing Clause.

SuggestedRemedy
Change to "introduced in Clause 45"

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment 4.

Cl 156 SC 156.1 P 76 L 34 # 12
Issenhuth, Tom Huawei
Comment Type E Comment Status A

Text reads "(see 78)", missing Clause.

SuggestedRemedy
Change to "(see Clause 78)"

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment 4.

Cl 156 SC 156.1.1 P 76 L 39 # 13
Issenhuth, Tom Huawei
Comment Type E Comment Status A

Text reads "PMA (155)", missing Clause.

SuggestedRemedy
Change to "PMA (see Clause 155)"

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment 4.
IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Comment ID 14
Response

Cl 156 SC 156.1.1 P 76 L 42

Issenhuth, Tom Huawei

Comment Type E

Text reads "CFEC (155)", missing see and Clause.

Suggested Remedy

Change to "CFEC (see Clause 155)"

Cl 155 SC 155.2.4.1 P 40 L 13

Issenhuth, Tom Huawei

Comment Type E

Text reads "rate matching described at 119.2.4.1"

Suggested Remedy

Typical wording is "described in". Change to read "rate matching described in 119.2.4.1"

Cl 156 SC 156.4 P 78 L 9

Issenhuth, Tom Huawei

Comment Type E

Text reads "described in 45", missing Clause.

Suggested Remedy

Change to "described in Clause 45"

Cl 155 SC 155.2.5.10 P 51 L 40

Issenhuth, Tom Huawei

Comment Type E

Text reads "GMP de-mapper described at 155.2.5.8"

Suggested Remedy

Typical wording is "described in". Change to read "GMP de-mapper described in 155.2.5.8"

Cl 155 SC 155.3.3.3 P 56 L 29

Issenhuth, Tom Huawei

Comment Type E

Text reads "gray mapped".

Suggested Remedy

Gray should be capitalized so change to "Gray mapped"

IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Comment ID: 20

Out-of-band OSNR (min) has been set to a relaxed value (23 dB) in other specifications for DWDM links that do not include color-less add/drop components such as ROADMs. Since our intended use case does not include ROADMs in the network, we should adopt the same value.

Suggested Remedy:
Replace TBD with 23 dB.

Response
ACCEPT IN PRINCIPLE.

Comment ID: 21

Transmitter OOB OSNR is not listed in Table 156-11.

Suggested Remedy:
Add a row for Transmitter out-of-band OSNR with pattern 5, and a new related subclause 156.9.xx

Response
ACCEPT IN PRINCIPLE.

Comment ID: 22

Back-to-back measurements on multiple receivers with multiple different transmitters were reported in rahn_3cw_01a_220223. Those results support the receiver OSNR tolerance of 26 dB in Table 156-7. The value for receiver OSNR with transmitter and DWDM link impairments needs to be set higher than the tolerance value by a reasonable margin, say 2 dB.

Suggested Remedy:
Replace TBD with 28 dB

Response
ACCEPT IN PRINCIPLE.

Comment ID: 23

The transmitter out-of-band OSNR shall be within the limits given in Table 156-6. Out-of-band OSNR is defined as the ratio of the total signal power within the signal's -20 dB spectral mask points to the maximum integrated noise power (referred to 12.5 GHz) outside of the signal's -20 dB spectral mask points out to the limits of the C-band. See Figure 156-4.

NOTE—This definition of OSNR is consistent with the definition of OSNR in ITU-T G.698.2, except that in this clause the noise power density is referred to 12.5 GHz, instead of 0.1 nm in G.698.2. At a frequency of 193.6 GHz a measurement bandwidth of 0.1 nm is identical to 12.5 GHz.

With editorial license.
IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Cl. 156 SC 156.7.2 P 86 L 18 # 24
Lewis, David Lumentum

Comment Type T Comment Status A
Receiver damage threshold is a component rating specification rather than a required characteristic for link operation. Coherent receiver optics have very high ratings, e.g. +17 dBm, but are intended to operate normally at much lower power levels, e.g. -12 to 0 dBm.

Suggested Remedy
Remove the damage threshold value from the table.

Response Response Status C
ACCEPT IN PRINCIPLE.

Retain Damage threshold in Table 156-7 and replace TBD with 6.

Cl. 156 SC 156.9.18 P 93 L 9 # 25
Lewis, David Lumentum

Comment Type T Comment Status A

Ripple as defined in ITU-T G.698.2 is not the right definition for the 802.3cw DWDM black link. G.698.2 defines ripple as the roll-off of the channel characteristic at the maximum spectral excursion of the transmitter. For 802.3cw we have replace transmitter spectral excursion with parameters for transmit spectral shaping, including transmit spectrum (max) and transmit spectrum (min) in Table 156-6. This means that ripple of the DWDM black link needs to be defined with respect to the channel passband (max) and (min) parameters in Table 156-8.

Suggested Remedy
Define ripple as the maximum peak-to-peak insertion loss variation between points in the channel passband, spaced +/- 32 GHz from the nominal channel center frequency.

Response Response Status C
ACCEPT IN PRINCIPLE.

Change 156.9.18 to read "The ripple is the maximum peak-to-peak insertion loss variation between 3dB points in the channel passband."

Cl. 156 SC 156.8 P 87 L 10 # 28
Lewis, David Lumentum

Comment Type T Comment Status A

OSNR at TP3 (min) needs to be the same value as OSNR at TP3 listed in Table 156-7. Another comment proposes a value of 28 dB and if accepted, the same value is needed here.

Suggested Remedy
Replace TBD with 28 dB

Response Response Status C
ACCEPT IN PRINCIPLE.

In Table 156-8, for OSNR at TP3 (min) replace TBD with 29. See response to comment 44.
Interferometric crosstalk is defined in ITU-T G.698.2 to be the ratio of disturbing power to the wanted power within a single channel. The disturbing power is the power (not including ASE) that would remain if the wanted signal were removed from the link, while leaving all other link conditions the same. Because we are defining limits for adjacent channel isolation in Table 156-9, we should not need to define a value for interferometric crosstalk.

Suggested Remedy
Delete the parameter "interferometric crosstalk at TP3 (max)".

Response
REJECT.

Based on task force discussion it was decided to retain interferometric crosstalk at TP3 (max) in Table 156-8 with a TBD value.

Add parameter to Table 156-6: TX Clock Phase Noise (PN)-
The proposed changes is part of a general proposal to modify the current draft's approach of using EVM methodology, and instead replacing it with a known industry approach that can support the goal of ensuring interop. A supporting presentation will be presented into the Task Force for review.

Suggested Remedy
Add parameter to table 156-6: TX Clock Phase Noise (PN) with value: (See 156.9.x);
Add Mask, definition and test methodology in 156.9.x: TX Clock Phase Noise (PN):
-1001.00E+04
-1201.00E+05
-1301.00E+06
-1401.00E+07

Phase noise, L(f),
f_c=f_baud/128=~467.53 MHz

Mask does not apply to spurs, broadband phase noise only. Spurs are considered separately.

Response
REJECT.

Insufficient justification provided to add TX Clock Phase Noise (PN) to Table 156-6 and there were concerns on the measurability.

A straw poll was taken "I supporting rejecting comment 31";
Yes: 11, No: 10

Comment was WITHDRAWN by the commenter.
Add parameter to Table 156-6: Tx clock phase noise (PN)- Maximum total integrated RMS phase jitter between 10kHz and 10MHz.

The proposed changes is part of a general proposal to modify the current draft's approach of using EVM methodology, and instead replacing it with a known industry approach that can support the goal of ensuring interop. A supporting presentation will be presented into the Task Force for review.

Suggested Remedy

Add Parameter to Table 156-6: Tx clock phase noise (PN)- Maximum total integrated RMS phase jitter between 10kHz and 10MHz. With value: (See 156.9.x)

Add definition and test methodology in 156.9.x - Tx Clock Phase Noise (PN) - Maximum total integrated RMS phase jitter between 10kHz and 10MHz:

rms random jitter:

\[\sigma_{rj} = \frac{1}{2\pi f_c} \sqrt{2 \int_{f_1}^{f_2} 10^{(L(f)/10)} df} \]

rms periodic jitter (spurs):

\[\sigma_{pj,i} = \frac{1}{\sqrt{2}\pi f_c} \cdot 10^{(s_i/20)} \]

where,

\[f_1 = 10kHz, f_2 = 10MHz, f_c = f_{baud}/128 = 467.53MHz, L(f) = \text{phase noise (PN)} @ s_i = \text{individual spur in [dBc]} \]

rms total jitter:

\[\sigma_{tj} = \sqrt{\sigma_{rj}^2 + \sum_{i=1}^{N} \sigma_{pj,i}^2} \]

where,

\[N = \text{total number of spurs} \]

Response

REJECT.

Insufficient justification provided to add TX Clock Phase Noise (PN) - Maximum total integrated RMS phase jitter between 1MHz and 200MHz to Table 156-6 and there were concerns on the measurability.

This comment was related to comment 31 which was rejected via straw poll.
Add parameter to table 156-6: IQ amplitude imbalance (mean)-
The proposed changes is part of a general proposal to modify the current draft's approach of using EVM methodology, and instead replacing it with a known industry approach that can support the goal of ensuring interop. A supporting presentation will be presented into the Task Force for review.

Response

Add New Parameter to Table 156-6: IQ amplitude imbalance (mean). With value 1 dB
Add definition and test methodology in 156.9.x: IQ amplitude imbalance (mean). Definition and test methodology to be provided.

Response

ACCEPT IN PRINCIPLE.

Add New Parameter to Table 156-6: IQ amplitude imbalance (mean) with a value of 1 dB.

Add definition and test methodology for IQ amplitude imbalance (mean) in 156.9.x as a TBD.

With editorial license.

Add parameter to table 156-6: IQ phase error (min) - The proposed changes is part of a general proposal to modify the current draft's approach of using EVM methodology, and instead replacing it with a known industry approach that can support the goal of ensuring interop. A supporting presentation will be presented into the Task Force for review.

Response

Add New Parameter to Table 156-6: IQ phase error (min). With value -5 deg
Add definition and test methodology in 156.9.x: IQ phase error (min): Definition and test Methodology to be provided.

Response

ACCEPT IN PRINCIPLE.

Add New Parameter to Table 156-6: IQ phase error (min) with a value of -5 deg.

Add definition and test methodology for IQ phase error (min) in 156.9.x as a TBD.

With editorial license.

Add parameter to table 156-6: IQ quadrature skew (max) - The proposed changes is part of a general proposal to modify the current draft's approach of using EVM methodology, and instead replacing it with a known industry approach that can support the goal of ensuring interop. A supporting presentation will be presented into the Task Force for review.

Response

Add New Parameter to Table 156-6: IQ quadrature skew (max). With value 0.75 ps
Add definition and test methodology in 156.9.x: IQ quadrature skew (max): Definition and test Methodology to be provided.

Response

ACCEPT IN PRINCIPLE.

Add New Parameter to Table 156-6: IQ quadrature skew (max) with a value of 0.75 ps.

Add definition and test methodology for IQ quadrature skew (max) in 156.9.x as a TBD.

With editorial license.
Add parameter to table 156-6: Transmit Output Power Stability (min) - New parameter required to address Xtalk when operating on 75 GHz Grid

Add New Parameter: Transmit Output Power Stability (min) to Table 156-6. With value -1 dB.

Add definition and test methodology in 156.9.x: Transmit Output Power Stability: Definition and test Methodology to be provided.

Output power stability over time (EOL) when operating at a fixed wavelength and temperature.

ACCEPT IN PRINCIPLE.

Add New Parameter: Transmit Output Power Stability (max) to Table 156-6. With value +1 dB.

Add definition and test methodology in 156.9.x: Transmit Output Power Stability: Definition and test Methodology to be provided.

Output power stability over time (EOL) when operating at a fixed wavelength and temperature.

ACCEPT IN PRINCIPLE.

Add subclause 156.9.x: Transmit Output Power Stability: Is defined as "Output power worst case deviation from a target set value operating at a fixed wavelength and temperature." Add parameter to Table 156-11 with pattern "valid 400GBASE-R signal, 5".

With editorial license.
Add New Parameter to table 156-6: Transmit Output Power Absolute Accuracy (min) - New parameter required to address Xtalk when operating on 75 GHz Grid

Suggested Remedy

Add New Parameter to Table 156-6: Transmit Output Power Absolute Accuracy (min).
With value -1 dB
Add definition and test methodology in 156.9.x: Transmit Output Power Accuracy:
Definition and test methodology to be provided.

Absolute accuracy of delivered transmit output power relative to the TX Target Output Power setting. When operating at a fixed wavelength over temperature and over time (EOL).

When operating at a fixed wavelength over temperature and over time (EOL).

Response

ACCEPT IN PRINCIPLE.

Add New Parameter to Table 156-6: Transmit Output Power Absolute Accuracy (min).
With value +1 dB.
Add definition and test methodology in 156.9.x: Transmit Output Power Accuracy:
Definition and test methodology to be provided.

Absolute accuracy of delivered transmit output power relative to the TX Target Output Power setting. When operating at a fixed wavelength over temperature and over time (EOL).

Response

ACCEPT IN PRINCIPLE.

Add subclause 156.9.x: Transmit Output Power Absolute Accuracy:
Is defined as "Absolute accuracy of transmit output power relative to the TX Target Output Power setting when operating at a fixed wavelength over temperature and over time." Add parameter to Table 156-11 with pattern "valid 400GBASE-R signal, 5"

With editorial license.

Update Out-of-band OSNR (min) in table 156-6; with value TBD

Suggested Remedy

Update TBD in Table 156 with value 23 dB/0.1nm.
Add definition and test methodology in 156.9.x: Out-of-band OSNR:
Out-of-band OSNR is defined as the Tx signal power between the -20dB Tx Spectral Mask frequency points, referenced to the maximum optical noise power within any optical bandwidth of 0.1nm @ 193.7 THz or 12.5 GHz outside of the -20dB Tx Spectral Mask.

Response

ACCEPT IN PRINCIPLE.

See responses to comments 20, 21 and 22
IEEE P802.3cw D1.4 400 Gb/s over DWDM systems 5th Task Force review comments

Cl. 156 SC 156.9.10 P 92 L 3,4,8 # 43
Sluyski, Mike Cisco Systems

Comment Type: TR Comment Status: D
Change Text in Clause 156.9.10 : - The proposed change is part of a general proposal to modify the current draft’s approach of using EVM methodology, and instead replacing it with a known industry approach that can support the goal of ensuring interoperability. A supporting presentation will be presented into the Task Force for review.

Suggested Remedy:
- Remove sentence: The error vector magnitude shall be within the limits given in Table 156–6 if measured using the methods specified in 156.10.1.1 and 156.10.1.2.
- Removal is not required if TF can agree that EVM can be considered a supplementary (optional) specification and test.
- Change Line 8 as: The components of the (optional) EVM test setup are described in 156.10.1

Proposed Response: Response Status: Z
REJECT.

This comment was WITHDRAWN by the commenter.

Cl. 156 SC 156.7.2 P 86 L 22 # 44
Zhang, Bo Marvell

Comment Type: TR Comment Status: A
Address TBD value

Suggested Remedy:
- Given the methodology adopted in 802.3ct, suggest the following two categories. For average receive power < -12dBm, min Receiver OSNR is 34dB. For average receive power >= -12dBm, min Receiver OSNR is 29dB.

Response: Response Status: C
ACCEPT IN PRINCIPLE.

In Table 156-7 for Receiver OSNR (min) replace TBD with 29.

Cl. 156 SC 156.9.19 P 96 L 13 # 45
Zhang, Bo Marvell

Comment Type: ER Comment Status: A
Remove optical path OSNR penalty parameter

Suggested Remedy:
- Remove optical path OSNR penalty

Response: Response Status: C
ACCEPT IN PRINCIPLE.

Per task force discussion it was decided to retain Optical path OSNR penalty in Table 156-11. It noticed there was a previous mistake in removing Optical path OSNR penalty (max) from Table 156-8 per D1.2 comment 25. Insert Optical path OSNR penalty (max) in Table 156-8 with a value of 3 dB. With editorial license.

Cl. 156 SC 156.9.1 P 89 L 19 # 45
Zhang, Bo Marvell

Comment Type: ER Comment Status: R
Remove optical path OSNR penalty definition

Suggested Remedy:
- Given there is no such parameter defined in the optical spec table, there is no need to define it.

Response: Response Status: C
REJECT.

See response to comment 45.
Comment Type	TR	Comment Status	A
Provide Receiver OSNR tolerance definition

Suggested Remedy

… is defined as "minimum OSNR that the receiver can withhold while maintaining a pre-FEC BER level lower than the CFEC threshold. The tolerance has to be met with a worst-case compliant transmitter, but it does not have to be met with the line impairments such as CD, PMD, PDL or optical crosstalk, etc."

Response

Response Status	C
ACCEPT IN PRINCIPLE.

Change the second sentence of 156.9.17 to "Receiver OSNR tolerance is defined as minimum OSNR that the receiver can tolerate while maintaining a pre-FEC BER level lower than the CFEC threshold. The tolerance has to be met with a worst-case compliant transmitter, but it does not have to be met with the line impairments such as CD, PMD, PDL or optical crosstalk, etc."

Comment Type	TR	Comment Status	A
Address TBD value

Suggested Remedy

Suggest coherent receiver bandwidth of at least 30GHz (roughly half the symbol rate)

Response

Response Status	C
ACCEPT IN PRINCIPLE.

Replace "TBD GHz" with "30 GHz"

Comment Type	TR	Comment Status	A
Address TBD value

Suggested Remedy

Suggest digitizer ENOB of at least 4 bit (over frequency)

Response

Response Status	C
ACCEPT IN PRINCIPLE.

Replace "TBD bits" with "4 bits (from 10 MHz to 29.9 GHz)"