IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 120A SC 120A.6 P 103 L 43 # 581
Dawe, Piers Nvidia

Comment Type E Comment Status A rewrite bucket

two 400GMII and 400GAUI-8 interfaces

SuggestedRemedy
Only one 400GAUI-8 interface

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.1.3 P 33 L 42 # 128
Nicholl, Gary Cisco Systems

Comment Type ER Comment Status A rewrite bucket
Item e) and f) mention SC-FEC, but there is no definiton of "SC-FEC" in the definitions section (1.4).

SuggestedRemedy
Add a definition for "SC-FEC" into section 1.4 (unless it was added by a previous project).

Response Response Status W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.1.4 P 33 L 49 # 129
Nicholl, Gary Cisco Systems

Comment Type ER Comment Status A rewrite bucket
This section is under "overview" and is titled "inter-sublayer interfaces". However it only mentions the inter-sublayer interfaces above and below the PCS. Shouldn't this section also cover the PMA inter-sublayer interfaces?

SuggestedRemedy
Add a description of the PMA inter-sublayer interfaces to this section.

Response Response Status W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.1.4 P 33 L 52 # 182
D'Ambrosia, John Fuuturewei, US Subsidiary of Huawei

Comment Type E Comment Status A rewrite bucket
When using an Extender, the PCS is connecting to the 400GMII in theory. This sentence does not express this.
Optionally the upper interface may connect to a 400GMII Extender, defined in Clause 118, which then connects to the Reconciliation Sublayer.

SuggestedRemedy
Delete noted sentence.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.1.4 P 34 L 2 # 42
Ran, Adee Cisco

Comment Type: T Comment Status: A rewrite bucket
The "rate" of the PCS output has been defined as per-lane transfer rate in previous PCS clauses, not as the aggregate bit rate as defined here. Consistency is preferable.

Suggested Remedy
Change to the per-lane rate (59.84375 \times 28/29 \text{Gb/s} on each of 8 PCS lanes).

Response Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.1.4 P 34 L 2 # 425
Dawe, Piers Nvidia

Comment Type: E Comment Status: A rewrite bucket
Giving an encoded rate in "Gb/s" is confusing because that’s how we express MAC rates.

Suggested Remedy
Something like: The 400GBASE-ZR PCS has a nominal transfer rate rate at the 8-wide PMA service interface of 59.84375 \times 28/29 \text{Gtransfers/s} +/- 20 ppm for a total of \approx 462.2414 \text{Gtransfers/s}.

Response Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.1.4 P 34 L 2 # 424
Dawe, Piers Nvidia

Comment Type: E Comment Status: A rewrite bucket
8 \times 59.84375 \times (28/29) ...

Suggested Remedy
use multiplication sign as elsewhere

Response Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl	155 SC 155.1.5	P 35 L 3	# 10
Brown, Matt | Huawei
Comment Type | E | Comment Status | A | rewrite bucket
"400GBASE-Z" should be "400GBASE-ZR".

Suggested Remedy
Change "400GBASE-Z" to "400GBASE-ZR".

Response
Response Status | C | ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl	155 SC 155.1.5	P 35 L 3	# 130
Nicholl, Gary | Cisco Systems
Comment Type | TR | Comment Status | A | rewrite bucket
Figure 155-2 is only a functional block diagram of the PCS. However section 155.1 is an overview for both the PCS and PMA sub-layers, so I think the functional block diagram should include both layers.

Suggested Remedy
Either update Figure 155-2 to include the PMA functions, or add a separate functional block diagram of the 400BASE-ZR PMA.

Another option would be delete section 155.1.5, and include the functional block diagrams of the PCS and the PMA under sections 155.2 and 155.3 respectively.

Response
Response Status | W | ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl	155 SC 155.1.5	P 35 L 3	# 428
Dawe, Piers | Nvidia
Comment Type | E | Comment Status | A | rewrite bucket
"SC-FEC adapt & encoding", "SC-FEC decoding & adapt" - it would help to know that there is interleaving here as well as below.

Suggested Remedy
"SC-FEC adapt, encoding and interleaving", "SC-FEC de-interleaving, decoding & adapt" ?

Response
Response Status | C | ACCEPT IN PRINCIPLE.
See response to comment #346.
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Comment</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.1</td>
<td>36</td>
<td>7</td>
<td>44</td>
<td>E</td>
<td>A</td>
<td>Line 5 says "PCS Transmit and PCS Receive processes", but then in lines 7, 17, and 27 it is "transmit channel", and line 35 "receive channel". "channel" is an overloaded term, it is not defined in this clause and its other meanings are quite different.</td>
<td>Change "transmit channel" to "Transmit process", 3 times. Change "receive channel" to "Receive function".</td>
<td>ACCEPT IN PRINCIPLE. See response to comment #346.</td>
</tr>
<tr>
<td>155</td>
<td>155.2.1</td>
<td>36</td>
<td>12</td>
<td>188</td>
<td>ER</td>
<td>A</td>
<td>The following is stated - When communicating with the PMA in the transmit direction, the 400GBASE-ZR PCS provides eight digital lanes, which the PMA encodes into two streams of 16QAM symbols. What are eight digital lanes? Isn't this just the PMA Service Interface</td>
<td>Reword Transmit data-units are sent to the PMA service interface via the PMA:IS_UNITDATA_i.request primitive. The PMA then encodes the data into two streams of 16QAM symbols.</td>
<td>ACCEPT IN PRINCIPLE. See response to comment #346.</td>
</tr>
<tr>
<td>155</td>
<td>155.2.1</td>
<td>36</td>
<td>14</td>
<td>430</td>
<td>E</td>
<td>A</td>
<td>"receives two streams of digitally encoded m-bit 16QAM symbols" we need an explanation of why "m-bit".</td>
<td>Add sentence explaining that m is an implementation choice, for SD-FEC.</td>
<td>ACCEPT IN PRINCIPLE. See response to comment #346.</td>
</tr>
</tbody>
</table>

Huber, Thomas, Nokia

Comment Type TR Comment Status A rewrite bucket
There is inconsistency wording between Figure 155-2 (which shows m lanes in the receive direction between the PMA and PCS), the text in 155.2.1 (which indicates two streams of m-bit symbols), and text in 155.2.5.1 and in 155.3 2 (both of which reference DP-16QAM symbols digitized to m-bit resolution).

SuggestedRemedy
Change "When communicating with the PMA in the receive direction, the 400GBASE-ZR PCS receives two streams of digitally encoded m-bit 16QAM symbols." to "When communicating with the PMA in the receive direction, the 400GBASE-ZR PCS receives digitally encoded m-bit DP-16QAM symbols."

Response Response Status W
ACCEPT IN PRINCIPLE. See response to comment #346.

Dawe, Piers, Nvidia

Comment Type E Comment Status A rewrite bucket
"receives two streams of digitally encoded m-bit 16QAM symbols" we need an explanation of why "m-bit".

SuggestedRemedy
Add sentence explaining that m is an implementation choice, for SD-FEC.

Response Response Status C
ACCEPT IN PRINCIPLE. See response to comment #346.
The current text refers to "the +/- 100ppm 257-bit blocks". Blocks don't have a frequency or ppm offset in and of themselves. Rather it is the block stream that has a rate with associate frequency tolerance.

Suggested Remedy

In this paragraph and any other occurrences, references to the frequency or frequency offset of "blocks" should be changed to "block stream".

Response

See response to comment #346.

This line has inner and outer FEC codes reversed -

The transmit data is encoded with a concatenated forward error correction (CFEC) code consisting of an inner SC-FEC code and an outer Hamming code SD-FEC.

Suggested Remedy

Modify noted sentence -

The transmit data is encoded with a concatenated forward error correction (CFEC) code consisting of an outer SC-FEC code and an inner Hamming code SD-FEC.

Response

See response to comment #346.
The use of inner and outer FEC codes seems to be backwards when compared to industry standards. Two industry books on FEC are: Error control coding (Shu Lin/Daniel Costello) and Error Control Coding (Peter Sweeney), both refer to the first code in a concatenation as the outer, and the 2nd code in a concatenation as the inner. This makes sense when you look at a diagram of the FEC codes, though it does not make sense when looking at the location of the codes in the concatenation.

Suggested Remedy
Reverse the usage to: "an outer SC-FEC code" and "an inner Hamming code SD-FEC".

Response
ACCEPT IN PRINCIPLE. See response to comment #346.

"Transmit data-units are sent to the service interface via the PMA:IS_UNITDATA_i.request primitive." I presume when we say "service interface here" we are referring to the PMA service interface and not the PCS service interface?

Suggested Remedy
Change
From: "Transmit data-units are sent to the service interface via the PMA:IS_UNITDATA_i.request primitive."
To: "Transmit data-units are sent to the PMA service interface via the PMA:IS_UNITDATA_i.request primitive."

Response
ACCEPT IN PRINCIPLE. See response to comment #346.

" PCS Receive function or PCS receive process"

Suggested Remedy
PCS Receive function or PCS receive process

Response
ACCEPT IN PRINCIPLE. See response to comment #346.

Should this be "128 bit"?

Suggested Remedy
Consider changing "128-symbol" to "128 bit symbol". Similar issue with "119-symbol" on line 37.

Response
ACCEPT IN PRINCIPLE. See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

| # | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FEC blocks | Suggested Remedy | Response | Comment Status | Response Status | Comment Status | Comment Type | Comment Status | SC-FE
The only 'shall' statement regarding the PCS transmit path (155.2.4) is in subclause 155.2.4.9 'Frame synchronous scrambler', similarly the only 'shall' statement regarding the PCS receive path (155.2.5) is in subclause 155.2.5.3 'Descrambler' and 155.2.5.6 'CRC32 check and error marking'. Mandatory PCS transmit requirements, mandatory PCS receive requirements and other mandatory requirements need to be covered by 'shall' statements.

SuggestedRemedy
See comment.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

The two paragraphs of 155.2.4.1 jump back and forth between 66b and 257b blocks in a way that could confuse a reader who is unfamiliar with the details of the clause 119 PCS.

SuggestedRemedy
Rewrite the text as follows:
The transmit PCS generates 66-bit blocks based upon the TXD<63:0> and <TXC<7:0> signals received from the 400GMII, as specified in the transmit state diagram shown in Figure 119-14. One 400GMII data transfer is encoded into one 66-bit block. The contents of each block are contained in a vector tx_coded<65:0>, which is passed to the 64B/66B to 256B/257B transcoder. tx_coded<1:0> contains the sync header and the remainder of the bits contain the block payload. The rate matching described in 119.2.4.1 is not required for the 400GBASE-ZR PCS because the mapping of the transcoded block stream into the 400GBASE-ZR frame structure performs clock compensation between the two clock domains.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

It is not clear to me from reading the descriptions as to how the 400GBASE-ZR base frame (Figure 155-3), 400GBASE-ZR OH frame (Figure 155-4) and the SC-FEC frame (Figure 155-5) are related and aligned?

SuggestedRemedy
Add a description or diagram to indicate how the various frame structures described in the comment are related and aligned (if indeed they are aligned).

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.
Subclause 155.2.4.3 'GMP mapper' says that 'The GMP mapper inserts the serialized stream of 257B blocks into the payload area of a 400GBASE-ZR frame.' and that 'The frame is illustrated as a structure with 256 rows of 10 280 bits with a logical transmission order of left to right, top to bottom.' This seems to imply that the stream of 257B blocks is inserted into one 400GBASE-ZR frame at a time.

Subclause 155.2.4.3 however then says that 'The Payload area of a four-frame multi-frame is divided into 10 220 GMP words ... encoded stream produced according to 155.2.4.2) ...'. This seems to imply that the 257B blocks are inserted into four 400GBASE-ZR frames, that form a single multi-frame, at a time.

Subclause '155.2.4.6 CRC32 and multi-block alignment signal (MBAS) insertion' then says 'The stream of 400GBASE-ZR frames, illustrated in Figure 155-3, provide the input ...' seems to imply 400GBASE-ZR frames are formed one at a time, and does not reference multi-frames.

SuggestedRemedy
Clarify the definition of a multi-frame, potentially through a figure, how 257B blocks are mapped to it, and how it is mapped to the SC-FEC message.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.3 P 37 L 30 # 40

Ran, Adee
Cisco

Comment Type E Comment Status A rewrite bucket

"The frame is illustrated as a structure with 256 rows of 10 280 bits with a logical transmission order of left to right, top to bottom. This frame contains 5140 bits of overhead and 10 220 257B blocks of payload. This frame is illustrated in Figure 155-3".

The order should be clearly defined in the text, not just "illustrated" in a figure.

SuggestedRemedy
Change the quoted text to:
"The frame is a structure that contains 5140 bits of overhead followed by 10 220 257-bit blocks of payload. This frame is illustrated in Figure 155-3, with transmission order from top row to bottom row and from left to right within each row".

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.3 P 37 L 31 # 392

Slavick, Jeff
Broadcom

Comment Type TR Comment Status A rewrite bucket

We traditionally refer to the 257b blocks as 257-bit blocks not 257B blocks (which could be inferred as 257 Byte)

SuggestedRemedy
Change the seven instances of 257B block to 257-bit block

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.
The description of the 20-bit pad says it is inserted after the OH blocks, but the OH is a 1280 bit field (which is later described as four chunks of 320 bits that are interleaved).

Since much of the text talks about 66b blocks or 257 blocks, it is probably better to refer to the OH bits rather than blocks.

Suggested Remedy

Change "A 20 bit pad of all zeros is added after the OH blocks" to "A 20 bit pad of all zeros is added after the 1280 OH bits."

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

The "column" has not been mentioned in preceding text. I assume a column is a bit, so there's no need to use another term (and possibly create confusion, since in the related Clause 155 the columns denote octets).

The payload area ends simply at the end of the frame, so rows are not necessary either.

Suggested Remedy

Change the quoted text to "from bit 5141 to the end of the frame, using GMP."

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

The antepenultimate paragraph of subclause 155.2.4.3 'GMP mapper' seems to be an introduction to the GMP and would be better placed as the first paragraph.

Suggested Remedy

Suggest that the antepenultimate paragraph of subclause 155.2.4.3 'GMP mapper' should be moved to be the first paragraph of subclause 155.2.4.3.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.2.4.3 P 38 L 11 # 443
Dawe, Piers Nvidia

Comment Type E Comment Status A rewrite bucket
ITU-T G.709 Clause 9.4.3.2

SuggestedRemedy
ITU-T G.709 Clause 19.4.3.2?
Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.3 P 38 L 11 # 393
Dawe, Piers Nvidia

Comment Type TR Comment Status A rewrite bucket
I could not find a Clause 9.4.3.2 in ITU-T G.709 but I did find a 19.4.3.2 that talks about GMP

SuggestedRemedy
Change 9.4.3.2 to 19.4.3.2
Response Response Status W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.3 P 38 L 12 # 205
Huber, Thomas Nokia

Comment Type TR Comment Status A rewrite bucket
Clause 9.4.3.2 of ITU-T G.709 does not discuss GMP. Since the GMP OH being used aligns with 400ZR, maybe it is better to point to 155.2.4.5.3 (which then points to the OIF 400ZR IA). ITU-T G.709 and G.709.x don't specifically discuss the GMP encoding that is used in 400ZR and 400GBASE-ZR

SuggestedRemedy
Change
The principles of the GMP mapper are described in ITU-T G.709 (06/2020) Annex D, with details of the encoding of the GMP overhead in ITU-T G.709 Clause 9.4.3.2.

to:
The principles of the GMP mapper are described in ITU-T G.709 (06/2020) Annex D. Details of the overhead encoding for 400GBASE-ZR are in 155.2.4.5.3.

Response Response Status W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.3 P 38 L 12 # 229
Law, David Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket
Subclause 155.2.4.3 'GMP mapper' says 'The principles of the GMP mapper ... with details of the encoding of the GMP overhead in ITU-T G.709 Clause 9.4.3.2.' On review of ITU-T G.709/Y.1331 (06/2020) <https://www.itu.int/rec/recommendation.asp?lang=en&parent=T-REC-G.709-202006-I>, there doesn't seem to be a subclause 9.4.3.2. Perhaps the reference should have been to subclause 19.4.3.2 'Generic mapping procedure (GMP)' in ITU-T G.709, although that only seems to address the justification overhead bytes.

SuggestedRemedy
Correct the reference to the GMP overhead in ITU-T G.709.
Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.
As a first time reader of this section, the term "stuff" and its use in this sub-clause is difficult to follow. It took me a while to understand what "stuff" was. In this case, I interpret "stuff" to mean non-data blocks or stuffing blocks. The last two paragraphs of the sub-clause could use wording improvements to make it clearer to the reader.

Suggested Remedy

In the second to last paragraph, change:
"Each 1028-bit GMP word is either filled with data (the logically serialized 257B encoded stream produced according to 155.2.4.2) or stuff, which is transmitted as zero and ignored on receipt." to
"Each 1028-bit GMP word is either filled with data bits (the logically serialized 257B encoded stream produced according to 155.2.4.2) or stuffing blocks, which is transmitted as zero and ignored on receipt."

In the last paragraph, change:
"While the GMP mechanism is generic, the particular clock rates and tolerances for this application result in only five cases, allowing the positions of data blocks and stuffing blocks to be pre-computed."

to
"While the GMP mechanism is generic, the particular clock rates and tolerances for this application result in only five cases, allowing the positions of data blocks and stuffing blocks to be pre-computed."

Update title of Table 155-1 to:
"GMP stuffing block locations in 400GBASE-ZR frame"

In Table 155-1, change column header from:
"GMP word numbers of stuff locations"
to
"GMP word numbers of stuffing block locations"

In Table 155-1, change column header from:
"(row, column) of stuff location starting bits"
to
"(row, column) of stuffing block starting location"

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
Comment Type: E Comment Status: A rewrite bucket
The space as thousands separator in numbers with fractional digits is unusual and confusing.
Also the tilde prefix with numbers with three fractional digits seems unnecessary, especially since these numbers are then bounded by integer values.

Suggested Remedy
Change "between ~10 214.684 and ~10 217.136" to "between 10 214 and 10 218".
Alternatively keep the fractions and delete the space separators.

Response Response Status: C ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type: T Comment Status: A rewrite bucket
It seems that the GMP word numbers start from 1 while the bits and rows start from 0.
If the starting index is inconsistent, it should at least be explicit.

Suggested Remedy
Add "(starting from 1)" after "GMP word numbers".

Response Response Status: C ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type: E Comment Status: A rewrite bucket
The "(row, column)" column seems redundant with the GMP word numbers. Also, "rows" is only used for illustration and "column" is not defined.

Suggested Remedy
Consider deleting the third column. Otherwise, change "column" to "bit #".

Response Response Status: C ACCEPT IN PRINCIPLE.
See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment Type: T
Comment Status: A
Comment Type: E
Comment Status: A

This text could be clarified. GMP is converting from the clock domain of the payload (stream of 257b blocks) to the clock domain of the 400GBASE-ZR frame. Presumably the payload blocks are already aligned to the payload clock.

SuggestedRemedy
Rewrite as follows: The AM, pad, and OH fields are populated after the GMP mapping process has rate-matched the 257B block stream to the payload area of the 400GBASE-ZR frame.

Response
ACCEPT IN PRINCIPLE.

Ran, Adee
Cisco

The name of the section include 400GBASE-ZR, why? Cl119 uses “for 200GBASE-R” and “for 400GBASE-R” since it has two different methods done for the different rates. But this is only 1 rate clause and Clause 91 and 135 don’t attach the rate to it’s section heading

SuggestedRemedy
Remove "400GBASE-ZR" from the section title of 155.2.4.4.1 and 155.2.4.4.2

Response
ACCEPT IN PRINCIPLE.

Slavick, Jeff
Broadcom

"The 400GBASE-ZR overhead is a 40-byte frame structure that uses a four-frame multi-frame, as shown in Figure 155-4 "

There are 3 occurrences of "frame" in this sentence, it’s unclear what they mean (especially with "400GBASE-ZR frame" also being defined; "frame" is an overly overloaded term).

Also, "byte" is not strictly defined in 802.3 and we typically use the more specific "octet" instead.

SuggestedRemedy
Change to "The 400GBASE-ZR overhead is a 160-octet block that is divided into four 40-octet frames, as shown in Figure 155-4”.

Change "byte" to "octet" globally.

In 151.2.4.5.1, change "a 256-frame multi-frame sequence" to "a 256-frame sequence".

In 155.2.4.5.3 change "four-frame multi-frame" to "OH".

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.
Comment Type TR Comment Status A rewrite bucket

The OH section of the 400GBASE-ZR frame is 1280 bits in size. This intro sentence states that OH is only a 40-byte is only 320 bits of data.

SuggestedRemedy

Remove 155.2.4.5.4 and update 155.2.4.5 as follows (retaining Figure 155-4):

155.2.4.5 Overhead (OH)

The 400GBASE-ZR frame contains a 1280-bit OH field. This field is logically composed of four 320-bit structures. The 40-byte overhead frame described in 155.2.4.5.1 is the first such 320-bit structure. The second, third, and fourth 320-bit structures are all zeros. The four 320-bit structures are 10-bit interleaved to form the 1280-bit overhead field.

155.2.4.5.1 40-byte overhead frame

The 40-byte overhead frame is a 40-byte frame structure that uses a four-frame multi-frame, as shown in Figure 155-4 and described in 155.2.4.5.1.1 through 155.2.4.5.1.3.

The contents of the 40-byte overhead frame is dependent upon the two LSB bits of the MFAS (see 155.2.4.5.1.1) Multi-frame alignment signal (MFAS)

The MFAS is in the first byte of the 40-byte overhead frame. It is a wrapping counter that is incremented each frame to provide a 256-frame multi-frame sequence as defined by ITU-T G.709.1 Clause 9.2.1.

Renumber 155.2.4.5.2 and 155.2.4.5.3 to 155.2.4.5.1.2 and 155.2.4.5.1.3 keeping the text unchanged for those sections.

Response Response Status W

ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment Type TR Comment Status A rewrite bucket
"The RPF bit indicates signal fail status was detected by the remote 400GBASE-ZR receive function": why is this here? Doesn't Ethernet RF do that job?

SuggestedRemedy
If the idea is that a 400GBASE-ZR PHY should continue to transmit data while its input is bad, then changes elsewhere would be needed for unidirectional operation

Response Response Status W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket
"signal fail status was detected by the remote 400GBASE-ZR receive function in the upstream direction". But see 1.4.586 upstream: In an access network, transmission away from the subscriber end of the link. Applicable to networks where there is a clear indication in each deployment as to which end of a link is closer to a subscriber.
A status is generated, maybe based on detecting something.

SuggestedRemedy
Something like:
The RPF bit is used by a 400GBASE-ZR PHY to indicate to its link partner the signal fail status at its receive function

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket
Isn't "... 400GBASE-ZR receive function in the upstream direction ..." duplicative as the 'upstream direction' is the receive path. And since there is only one 400GBASE-ZR receive function, it doesn't need to be qualified by 'in the upstream direction'.

SuggestedRemedy
Suggest that "... 400GBASE-ZR receive function in the upstream direction and ..." should read '... 400GBASE-ZR receive function and ...'.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.
<table>
<thead>
<tr>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Comment</th>
<th>Suggested Remedy</th>
<th>Response</th>
<th>Response Status</th>
<th>Comment Status</th>
<th>Response Status</th>
<th>Comment Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>T</td>
<td>A</td>
<td>rewrite bucket</td>
<td>Subclause 155.2.4.5.2 'Link status monitoring and signaling' says 'RPF is set to "1" to indicate a remote 400GBASE-ZR PHY defect indication' however there appears to be no definition of a 400GBASE-ZR PHY defect in the draft.</td>
<td>Please provide a definition of the conditions considered a 400GBASE-ZR PHY defect.</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TR</td>
<td>A</td>
<td>rewrite bucket</td>
<td>Per Figure 155-4 the RPF field is in bit location 0 of the Status Octect. But the Text states it's bit location 1.</td>
<td>Change "in bit 1" to "the first bit"</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>rewrite bucket</td>
<td>What do "downstream", "host interface signal" and "MDI" signal" mean? Perhaps "downstream" should be "link partner"? For signals, are these the signals received by the 400GAUI C2M (which is optional) and the MDI?</td>
<td>Please rephrase to clarify.</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>A</td>
<td>rewrite bucket</td>
<td>"If there is not an adjacent PHY 400GXS sublayer" Also in 155.2.5.7.2.</td>
<td>"If there is no adjacent PHY 400GXS sublayer" (2 places).</td>
<td>ACCEPT IN PRINCIPLE.</td>
<td>A</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cl</td>
<td>SC</td>
<td>Page</td>
<td>Line</td>
<td>Comment Type</td>
<td>Comment Status</td>
<td>Comment</td>
<td>Suggested Remedy</td>
<td>Response</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>---------------</td>
<td>---------</td>
<td>------------------</td>
<td>----------</td>
</tr>
<tr>
<td>155</td>
<td>155.2.4.5.2</td>
<td>40</td>
<td>10</td>
<td>T</td>
<td>rewrite bucket</td>
<td>"the received status byte in the receive direction": eh?</td>
<td>Change "the value of RD in STAT<6> is set to the value of LD in STAT<6> of the received status byte in the receive direction" to "the value of RD in the transmitted STAT<6> is set to the value of LD in the received STAT<6>"?</td>
<td>ACCEPT IN PRINCIPLE.</td>
</tr>
<tr>
<td>155</td>
<td>155.2.4.5.3</td>
<td>40</td>
<td>17</td>
<td>T</td>
<td>rewrite bucket</td>
<td>Reference to OIF-400ZR-01.0, March 10, 2020, subclause 8.9. Note that this document is subject to active maintenance</td>
<td>If feasible, write the specification here. If not, check that the reference is complete, correct and detailed enough, add a normative reference. Refer to a later OIF-400ZR if appropriate.</td>
<td>ACCEPT IN PRINCIPLE.</td>
</tr>
<tr>
<td>155</td>
<td>155.2.4.5.3</td>
<td>40</td>
<td>24</td>
<td>E</td>
<td>rewrite bucket</td>
<td>"OIF-400ZR-01.0, March 10, 2020, subclause 8.9"</td>
<td>It seems worthwhile to provide some basic context regarding the meaning of Cm(t) and SCn(t). Although G.709 provides the details, it may be worthwhile expanding this statement somewhat.</td>
<td>ACCEPT IN PRINCIPLE.</td>
</tr>
</tbody>
</table>
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment

C_m(t) and CnD(t) are used but not defined. I assume they are defined in an external reference, but it is unclear. If all control bytes are defined externally then there is no need for this text.

Suggested Remedy

Preferably add the detailed definitions from the referenced document. Otherwise, delete the entire last paragraph.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment

The 'nD' in CnD(t) should be subscripted.

Suggested Remedy

Change the nD to subscript.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment

It appears that the 10-bit interleaver isn't specified.

Suggested Remedy

Specify the 10-bit interleaver.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment

A figure showing the interleaving of the 4 OH instances would help clarify the OH structure.

Suggested Remedy

Add a figure showing the interleaved OH mapping.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment

The first paragraph of subclause 155.2.4.6 should be changed to read 'The stream of 400GBASE-ZR frames, illustrated in Figure 155-3, provide the information bits for the calculation of SC-FEC input blocks. To conform with the format of the input SC-FEC block, 119 rows from the stream of 400GBASE-ZR frames are mapped to the information bits in 5 successive SC-FEC input blocks. Each SC-FEC input block has 119 x 10 280 / 5 bits = 244 664 information bits.'

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment

The text ‘... cyclic redundancy code is calculated over 244 664 input bits as ...’ in the second paragraph of subclause 155.2.4.6 should be changed to read ‘... cyclic redundancy code is calculated over the 244 664 information bits as ...’.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.4.6</td>
<td>40</td>
<td>39</td>
<td>63</td>
</tr>
</tbody>
</table>

Comment

Ran, Adee, Cisco

Comment Type E

Comment Status A

rewrite bucket

"mapped to 5 successive SC-FEC blocks"

Isolated numbers less than 10 in general text should be spelled out.

Suggested Remedy

Change "5" to "five".

Implement similar changes, and write numbers greater than 9 in digits, across the document as necessary.

Response

Response Status C

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.4.6</td>
<td>40</td>
<td>42</td>
<td>249</td>
</tr>
</tbody>
</table>

Comment

Law, David, Hewlett Packard Enterprise

Comment Type T

Comment Status A

rewrite bucket

Subclause 155.2.4.6 'CRC32 and multi-block alignment signal (MBAS) insertion' says 'The 32 bits of the CRC value are placed with the x31 term as the left-most bit...', however, it doesn't specify where. In addition, it also says, 'Following the CRC32 a 6-bit MBAS is added', without specifying the bit order. Finally, the CRC is referred to as a field (page 40, line 44) whereas the MBAS is referred to as overhead.

Suggested Remedy

Suggest that:

1. The text '... the CRC value are placed with ...' in the second paragraph of subclause 155.2.4.6 should be changed to read '... the CRC value are placed immediately after the information bits in the SC-FEC input block with ...'.

2. The first sentence of the last paragraph of subclause 155.2.4.6 should be moved to the end of the paragraph and changed to read 'The 6 bits of the MBAS field are placed immediately after the CRC with the most significant bit as the left-most bit of the MBAS field and the least significant bit as the right-most bit of the MBAS field. The bits of the MBAS are transmitted in the order of most significant bit first, least significant bit last.'.

3. The two instances of ' MBAS overhead' should be changed to read 'MBAS field'.

Response

Response Status C

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.4.6</td>
<td>40</td>
<td>50</td>
<td>454</td>
</tr>
</tbody>
</table>

Comment

Dawe, Piers, Nvidia

Comment Type T

Comment Status A

rewrite bucket

Subclause 155.2.4.6 'between source and sink'

There is no illustration of the CRC32 block, so "right" and "left" are not really meaningful; The subsequent sentence defines the transmission order, so this sentence seems redundant.

Suggested Remedy

Delete the quoted sentence.

Response

Response Status C

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.4.6</td>
<td>40</td>
<td>50</td>
<td>455</td>
</tr>
</tbody>
</table>

Comment

Dawe, Piers, Nvidia

Comment Type T

Comment Status A

rewrite bucket

needs a figure showing the 400GBASE-ZR frame rows, SC-FEC blocks, CRC32 and MBAS

Suggested Remedy

Please add a figure per comment.

Response

Response Status C

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.2.4.7 P 41 L 1 # 251
Law, David Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket

Suggest that subclause 155.2.4.7 be retitled 'SC-FEC adapt and encoding' to match the equivalent block in Figure 155-2.

SuggestedRemedy
See comment.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.7 P 41 L 11 # 252
Law, David Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket

Subclause 155.2.4.7 '400GBASE-ZR frame to SC-FEC adaptation' says '... which are added to the 400GBASE-ZR SC-FEC frame as ...'. This seems to be the only time the term '400GBASE-ZR SC-FEC frame' is used and the title of the referenced figure 155-6 is '400GBASE-ZR SC-FEC encoded frames'.

SuggestedRemedy
Subclause 155.2.4.7 '400GBASE-ZR frame to SC-FEC adaptation' says '... which are added to the 400GBASE-ZR SC-FEC frame as ...'. This seems to be the only time the term '400GBASE-ZR SC-FEC frame' is used and the title of the referenced figure 155-6 is '400GBASE-ZR SC-FEC encoded frames'.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.7 P 42 L 5 # 253
Law, David Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket

There is no specification of how the 8 parity blocks are mapped into bits 10280 to 10970 of the 400GBASE-ZR SC-FEC encoded frames.

SuggestedRemedy
Add a new paragraph to subclause 155.4.7 to specify the mapping of the 16384 parity bits into bits 10280 to 10970 of the 400GBASE-ZR SC-FEC encoded frames.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.7 P 42 L 11 # 254
Law, David Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket

Both instances of block 7.11 in figure 155-6 are marked with an asterisk which, I assume, is meant to reference a footnote that says that only the information bits of block 7.11 are included, that the CRC32 and MBAS bits are appended after the parity bits, and the pad is discarded.

SuggestedRemedy
Add a new paragraph to subclause 155.4.7 to specify the mapping of the CRC32 and MBAS bits from block 7.11 and add a suitable footnote to figure 155-6.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.2.4.7 P 42 L 12 # 400
Slavick, Jeff Broadcom

Comment Type E Comment Status A rewrite bucket

The "dark" line appears to be on the wrong side of the CRC+MBAS grey box. Should be on the right edge of all boxes but that's not true for 3 of them. And the last one isn't part of it's Bj+3 box.

SuggestedRemedy
Thicken the right edge of the grey boxes that represent the CRC+MBAS.

Response Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

TYPE: TR/technical required ER/editorial required GR/general required T/Technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Page 21 of 71 10/19/2022 4:38:42 PM
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.2.4.7 P 42 L 42 # 388
Slavick, Jeff Broadcom
Comment Type TR Comment Status A rewrite bucket
Figure 155-6 does not show the 6x119b pad

Suggested Remedy
Add box at the end of the i+119 row to the right of the CRC+MBAS labeled 6x119b PAD

Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.8 P 43 L 4 # 391
Slavick, Jeff Broadcom
Comment Type TR Comment Status A rewrite bucket
What is the contents of the PAD?

Suggested Remedy
Change "pad bits added" to "pad bits of all zeroes added"

Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 9 # 65
Ran, Adee Cisco
Comment Type T Comment Status A rewrite bucket
a frame-synchronous scrambler of sequence 65 535
Unclear; should it be "with sequence length of 65535"?
A 16-degree polynomial creates a periodic sequence length of 131071, so is it the first
65535 bits of that periodic sequence starting from the reset value?

Suggested Remedy
Rewrite as appropriate.

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 10 # 400
Dawe, Piers Nvidia
Comment Type TR Comment Status A rewrite bucket
More information needed. Given the "generating polynomial", what has to be done? There
are examples of scrambler definitions in the base document.

Suggested Remedy
?

Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 12 # 451
Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
is row 1 the first or second row?

Suggested Remedy
?

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 12 # 458
Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
x

Suggested Remedy
define x

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.2.4.9 P 43 L 12 # 459
Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
which end goes first?
SuggestedRemedy
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 14 # 31
Marris, Arthur Cadence Design Systems
Comment Type T Comment Status A rewrite bucket
Is resetting the scrambler a functional requirement?
SuggestedRemedy
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 14 # 66
Ran, Adee Cisco
Comment Type T Comment Status A rewrite bucket
The definition of the scrambler is ambiguous; The choice of coefficient order, shift direction, and the point from which the output is taken can create different results.
Scrambler specifications typically include a block diagram of an LFSR and sometimes a portion of the sequence for clarity.
SuggestedRemedy
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.9 P 43 L 16 # 399
Slavick, Jeff Broadcom
Comment Type TR Comment Status A rewrite bucket
The scrambler stops advancing during the PAD bits? So the 714b of PAD will be either all 0's or all 1's?
SuggestedRemedy
Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.10 P 43 L 20 # 255
Law, David Hewlett Packard Enterprise
Comment Type E Comment Status A rewrite bucket
'Suggest that "... SC-encoder ..." should read "... SC-FEC encoder ...".'
SuggestedRemedy
See comment.
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.4.10 P 43 L 21 # 68
Ran, Adee Cisco
Comment Type T Comment Status A rewrite bucket
"The convolutional interleaver is described in ITU-T G.709.3 subclause 15.4.3"
The text in this subclause and figure 155-7 are insufficient to understand/implement the interleaver function.
If it isn't fully defined (defined only in an external document) then there is no need for this text and figure.
SuggestedRemedy
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Page 23 of 71 10/19/2022 4:38:42 PM
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

| Cl | SC | 155.2.4.10 | P | 43 | L | 21 | # | CI 155 SC 155.2.4.11 | P | 44 | L | 36 | # | 257 |
|----|----|------------|---|----|---|----|---|CI 155 SC 155.2.4.10 | P | 43 | L | 22 | # | 256 |

Ran, Adee
Cisco

Comment Type T
Comment Status A rewrite bucket

ITU-T G.709.3 seems to be a normative reference.

SuggestedRemedy
Add a reference in 1.3.

Response
Response Status C

ACCEPT IN PRINCIPLE.

See response to comment #346.

Huber, Thomas
Nokia

Comment Type TR rewrite bucket

The convolutional interleaver and Hamming encoder are working with 10976 rows, but figure 155-7 indicates 10970 rows.

SuggestedRemedy
Change 10970 to 10976 in Figure 155-7.

Response
Response Status W

ACCEPT IN PRINCIPLE.

See response to comment #346.

Dawe, Piers
Nvidia

Comment Type TR rewrite bucket

G.709.3 is not a normative reference.

SuggestedRemedy
Add the content locally or add the reference and any information that is needed to make the definition accessible, complete and unambiguous.

Response
Response Status W

ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David
Hewlett Packard Enterprise

Comment Type T rewrite bucket

IEEE Std 802.3 doesn't specify implementations.

SuggestedRemedy
Suggest, based on the in subclause 155.2.4.9 above (page 43, line 8), that the text 'The convolutional interleaver is described in ITU-T G.709.3 subclause 15.4.3. It contains 16 parallel delay lines that are accessed sequentially for each block of 119 bits.' is changed to read 'The convolutional interleaver shall be functionally equivalent to the convolutional interleaving process described in ITU-T G.709.3 subclause 15.4.3'.

Response
Response Status C

ACCEPT IN PRINCIPLE.

See response to comment #346.
Comment Type TR Comment Status D rewrite bucket

generic operation ... in ITU-T G.709.3 Annex D: but that contains undefined symbols and terms.

SuggestedRemedy
As it seems it is not very long, write it out cleanly here

Proposed Response
PROPOSED ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment Type T Comment Status A rewrite bucket

"The generic operation of the Hamming SD-FEC scheme is specified in ITU-T G.709.3 Annex D"
The text in this subclause is insufficient to understand/implement the SD-FEC encoder function. If it isn't fully defined (defined only in an external document) then there is no need for the details in the second paragraph.

SuggestedRemedy
Preferably add the detailed definitions from the referenced document. Otherwise, delete the second paragraph.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment Type T Comment Status A rewrite bucket

This says 8-bit symbols, 155.2.1 says two streams of 4-bit data. PMA:IS_UNITDATA_i.request is 7 wide.

SuggestedRemedy
The difference may matter when we are discussing Skew limits

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.
Suggest that Figure 155-8 and the last paragraph of subclause 155.2.4.11 be updated to describe how the 128-bit code word from the SD-FEC encoder is passed across the PMA service interface. In addition, the fourth paragraph of subclause 155.3.3.1 should be updated to note that the 128-bit code word is passed across the PMA service interface to the PMA where the Gray mapping and polarization distribution described occurs.

Suggested Remedy

[1] Suggest that the PMA service interface be added to Figure 155-8. To do this suggest that the label 'PMA:IS_UNITDATA_0.request' be added to the leftmost arrow at the bottom of the figure, with the label 'PMA:IS_UNITDATA_1.request' and 'PMA:IS_UNITDATA_2.request' staggered above on the next two arrows to the right. The label 'PMA:IS_UNITDATA_7.request' should be added to the rightmost arrow. As an existing example, see Figure 119-10 '200GBASE-R Transmit bit ordering and distribution'.

[2] Suggest that the last paragraph of subclause 155.2.4.11 be changed to read 'The 128-bit code word is then passed across the 8 lane PMA service interface to the PMA sublayer as 16 groups of 8 bits, each representing a DP-16QAM symbol. The first group of 8 bits are c0 through c7, the last group of 8 bits are c120 through C127, with the LSB through the MSB of each group of 8 bits mapped in order to the bX symbol parameter of the PMA:IS_UNITDATA_0.request through the PMA:IS_UNITDATA_7.request primitive respectively (see Figure 155-8)'.

[3] Suggest that the text 'Each 128-bit code word from the SD-FEC encoder c = [c0, c1, ...c127], is mapped ...' in the fourth paragraph of subclause 155.3.3.1 should be changed to read 'Each 128-bit code word from the SD-FEC encoder is passed across the PMA service interface as described in 155.2.4.11. Each 128-bit code word c = [c0, c1, ...c127], is mapped ...'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Suggested Remedy

[1] Suggest that the PMA service interface be added to Figure 155-8. To do this suggest that the label 'PMA:IS_UNITDATA_0.request' be added to the leftmost arrow at the bottom of the figure, with the label 'PMA:IS_UNITDATA_1.request' and 'PMA:IS_UNITDATA_2.request' staggered above on the next two arrows to the right. The label 'PMA:IS_UNITDATA_7.request' should be added to the rightmost arrow. As an existing example, see Figure 119-10 '200GBASE-R Transmit bit ordering and distribution'.

[2] Suggest that the last paragraph of subclause 155.2.4.11 be changed to read 'The 128-bit code word is then passed across the 8 lane PMA service interface to the PMA sublayer as 16 groups of 8 bits, each representing a DP-16QAM symbol. The first group of 8 bits are c0 through c7, the last group of 8 bits are c120 through C127, with the LSB through the MSB of each group of 8 bits mapped in order to the bX symbol parameter of the PMA:IS_UNITDATA_0.request through the PMA:IS_UNITDATA_7.request primitive respectively (see Figure 155-8)'.

[3] Suggest that the text 'Each 128-bit code word from the SD-FEC encoder c = [c0, c1, ...c127], is mapped ...' in the fourth paragraph of subclause 155.3.3.1 should be changed to read 'Each 128-bit code word from the SD-FEC encoder is passed across the PMA service interface as described in 155.2.4.11. Each 128-bit code word c = [c0, c1, ...c127], is mapped ...'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Suggested Remedy

[1] Suggest that the PMA service interface be added to Figure 155-8. To do this suggest that the label 'PMA:IS_UNITDATA_0.request' be added to the leftmost arrow at the bottom of the figure, with the label 'PMA:IS_UNITDATA_1.request' and 'PMA:IS_UNITDATA_2.request' staggered above on the next two arrows to the right. The label 'PMA:IS_UNITDATA_7.request' should be added to the rightmost arrow. As an existing example, see Figure 119-10 '200GBASE-R Transmit bit ordering and distribution'.

[2] Suggest that the last paragraph of subclause 155.2.4.11 be changed to read 'The 128-bit code word is then passed across the 8 lane PMA service interface to the PMA sublayer as 16 groups of 8 bits, each representing a DP-16QAM symbol. The first group of 8 bits are c0 through c7, the last group of 8 bits are c120 through C127, with the LSB through the MSB of each group of 8 bits mapped in order to the bX symbol parameter of the PMA:IS_UNITDATA_0.request through the PMA:IS_UNITDATA_7.request primitive respectively (see Figure 155-8)'.

[3] Suggest that the text 'Each 128-bit code word from the SD-FEC encoder c = [c0, c1, ...c127], is mapped ...' in the fourth paragraph of subclause 155.3.3.1 should be changed to read 'Each 128-bit code word from the SD-FEC encoder is passed across the PMA service interface as described in 155.2.4.11. Each 128-bit code word c = [c0, c1, ...c127], is mapped ...'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Suggested Remedy

[1] Suggest that the PMA service interface be added to Figure 155-8. To do this suggest that the label 'PMA:IS_UNITDATA_0.request' be added to the leftmost arrow at the bottom of the figure, with the label 'PMA:IS_UNITDATA_1.request' and 'PMA:IS_UNITDATA_2.request' staggered above on the next two arrows to the right. The label 'PMA:IS_UNITDATA_7.request' should be added to the rightmost arrow. As an existing example, see Figure 119-10 '200GBASE-R Transmit bit ordering and distribution'.

[2] Suggest that the last paragraph of subclause 155.2.4.11 be changed to read 'The 128-bit code word is then passed across the 8 lane PMA service interface to the PMA sublayer as 16 groups of 8 bits, each representing a DP-16QAM symbol. The first group of 8 bits are c0 through c7, the last group of 8 bits are c120 through C127, with the LSB through the MSB of each group of 8 bits mapped in order to the bX symbol parameter of the PMA:IS_UNITDATA_0.request through the PMA:IS_UNITDATA_7.request primitive respectively (see Figure 155-8)'.

[3] Suggest that the text 'Each 128-bit code word from the SD-FEC encoder c = [c0, c1, ...c127], is mapped ...' in the fourth paragraph of subclause 155.3.3.1 should be changed to read 'Each 128-bit code word from the SD-FEC encoder is passed across the PMA service interface as described in 155.2.4.11. Each 128-bit code word c = [c0, c1, ...c127], is mapped ...'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
The vast majority of references to the in-phase and quadrature-phase X and Y polarization use the symbols \(I_X\), \(Q_X\), \(I_Y\), and \(Q_Y\) (e.g., Figure 155-10 on page 51, line 28 and subclause 155.3.3, page 52, line 9). There, however, seem to be a few instances where the X and Y are not in subscript, or the phase and polarization symbols are reversed.

Suggested Remedy

On the assumption that they are referencing the same signals, please use \(I_X\), \(Q_X\), \(I_Y\), and \(Q_Y\) in the following locations:

- Subclause 155.2.5.1, page 46, line 12
- Table 155-3, page 55, line 38
- Table 155-4, page 56, line 35
- Table 155-7, page 59, line 5 through 16

Response

Accept in principle.

See response to comment #346.

Change: polynomial given in 155.2.4.9.

To: polynomial given by Equation (155-1).

Response

Accept in principle.

See response to comment #346.
Comment Type TR Comment Status A rewrite bucket

Last paragraph of this section states that link degrade status is provided, but there's no MDIO mapping provided in the text to indicate it's status bits or control of thresholds.

Suggested Remedy
Add references to the MDIO registers to control and observe link degrade

Response Response Status W ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type TR Comment Status A rewrite bucket

The last paragraph states that the link degrade function is provided and that the bit error ratio is used to indicate this. But in the MDIO mapping (Table 155-8) points to fields that exist but reference 119.2.5.3 which specifies the thresholds in terms of rs-symbol error rates and FEC codewords.

Suggested Remedy
Replace the last paragraph of 155.2.5.5 with the following:

The 4000GBASE-ZR PCS may optionally provide the ability to signal degradation of the received signal. The presence of this option is indicated by the assertion of the FEC_degraded_SER_ability_variable (see 155.4.2.1). When the option is provided it is enabled by the assertion of the FEC_degraded_SER_enable_variable (see 155.4.2.1).

When FEC_degraded_SER_enable is asserted, additional error monitoring is performed by the PCS. The PCS counts the number of bits corrected by the SC-FEC decoder in consecutive nonoverlapping SC-FEC frames of FEC_degraded_SER_interval (see 155.4.2.1). If the SC-FEC decoder determines that a codeword is uncorrectable or errors are detected by the CRC32 check (see 155.2.5.6), the number of symbol errors detected is increased by 957 x 257. When the number of bit errors exceeds the threshold set in FEC_degraded_SER_activate_threshold (see 155.5.1), the FEC_degraded_SER_bit (see 155.5.1) is set. At the end of each interval, if the number of symbol errors is less than FEC_degraded_SER_deactivate_threshold, the FEC_degraded_SER_bit is cleared. If either FEC_degraded_SER_ability or FEC_degraded_SER_enable is de-asserted then the FEC_degraded_SER_bit is cleared.

Bring in 45.2.3.60.1 and add "155.2.5.5" to the see list
Bring in 45.2.3.61.1 and add "155.4.2.1" to the see list
Bring in 45.2.3.61.3 and add "155.2.5.5" to the see list
Bring in 45.2.3.61.4 and add "155.4.2.1" to the see list

Response Response Status W ACCEPT IN PRINCIPLE.
See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.2.5.6 P 46 L 53 # 470
Dawe, Piers Nvidia

Comment Type T Comment Status A rewrite bucket
base block*: not defined, used only once
SuggestedRemedy
I think this means the "B" blocks of 155.2.5.5. Are they "SC-FEC codewords", and are they named?
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.5.6 P 47 L 53 # 402
Slavick, Jeff Broadcom

Comment Type TR Comment Status A rewrite bucket
Uncorrectable blocks are not tracked in MDIO registers
SuggestedRemedy
Add references to the MDIO register for counting corrected and uncorrected FEC CW and bits
Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.2.5.7 P 47 L 7 # 134
Nicholl, Gary Cisco Systems

Comment Type E Comment Status A rewrite bucket
in "952 x 257B" does the "B" stand for bits ? If so I am not sure this follows the 802.3 style manual?
SuggestedRemedy
Change "952 x 957B" into "952 x 957 bits". Similar comment in the rest of this section where "B" is used.
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Suggested Remedy</th>
<th>Response Status</th>
<th>Comment</th>
<th>Resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.2.5.7</td>
<td>TR</td>
<td>A</td>
<td>Reference is to 155.4 which is all the FSM blocks, call out the specific AM lock one.</td>
<td>W</td>
<td>Slavick, Jeff</td>
<td>Broadcom</td>
</tr>
<tr>
<td>155</td>
<td>155.2.5.7</td>
<td>E</td>
<td>A</td>
<td>Suggest a direct reference to the Alignment marker lock state diagram is provided in subclause 155.2.5.7.</td>
<td>C</td>
<td>Law, David</td>
<td>Hewlett Packard Enterprise</td>
</tr>
<tr>
<td>155</td>
<td>155.2.5.7</td>
<td>TR</td>
<td>A</td>
<td>Figure 155-9 seems to be identical to Figure 155-4 and is not referenced</td>
<td>W</td>
<td>Slavick, Jeff</td>
<td>Broadcom</td>
</tr>
<tr>
<td>155</td>
<td>155.2.5.7.1</td>
<td>E</td>
<td>A</td>
<td>Figure 155-9 is identical to Figure 155-4 and is not referenced</td>
<td>C</td>
<td>Dawe, Piers</td>
<td>Nvidia</td>
</tr>
<tr>
<td>155</td>
<td>155.2.5.7.1</td>
<td>T</td>
<td>A</td>
<td>Figure 155-9 is an orphan</td>
<td>C</td>
<td>Huber, Thomas</td>
<td>Nokia</td>
</tr>
</tbody>
</table>

Response
- **Response Status**: W
- **Accept in Principle**
- **See response to comment #346.**

Comment Status: A

Response
- **Response Status**: C
- **Accept in Principle**
- **See response to comment #346.**
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment Type: T, Comment Status: A, rewrite bucket

Cl: 155 SC: 155.2.5.7.2 P: 48 L: 5 #: 474
Dawe, Piers Nvidia

Comment Type: T, Comment Status: A, upstream, downstream

Suggested Remedy: Rx, Tx. Compare base doc.

Response: Response Status: C, ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl: 155 SC: 155.2.5.7.2 P: 48 L: 9 #: 475
Dawe, Piers Nvidia

Comment Type: E, Comment Status: A, detailed in 155.2.5.7.2 - but this is 155.2.5.7.2

Suggested Remedy: ?

Response: Response Status: C, ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl: 155 SC: 155.2.5.7.2 P: 48 L: 21 #: 212
Huber, Thomas Nokia

Comment Type: E, Comment Status: A, rewrite bucket

Suggested Remedy: It looks like there is an 'of' that should be 'or' - I think the intent is that if the receiver can't frame to the DSP frame, or the 400ZR frame or multiframe, it inserts LF

Response: Response Status: C, ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl: 155 SC: 155.2.5.7.2 P: 48 L: 22 #: 476
Dawe, Piers Nvidia

Comment Type: T, Comment Status: A, framing of frame or multi-frame loss - eh?

Suggested Remedy: In the case of a loss of 400GBASE-ZR frame sync or multi-frame sync?

Response: Response Status: C, ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl: 155 SC: 155.2.5.7.2 P: 48 L: 23 #: 74
Ran, Adee Cisco

Suggested Remedy: "LF ordered sets" are not defined in this draft.

I assume it is the "Local Fault" RS ordered set.

Response: Response Status: C, ACCEPT IN PRINCIPLE.
(or another ordered set if so intended)
See response to comment #346.
This sentence appears to incorrectly imply that the CRC8 is the sole protection against errors in JC1-3. Although G.709 provides the details, it may be worthwhile expanding this statement somewhat.

SuggestedRemedy
In conjunction with the change proposed in the previous comment, add the following sentence to the end of the paragraph: "The JC1-2 field information is also protected by limits on how the JC1-2 fields can change in successive multi-frames and the coding technique for indicating these changes, which combine with the CRC8 in JC3 to provide error correction capability for bit and burst errors impacting JC1-3."

Response
ACCEPT IN PRINCIPLE.

Dawe, Piers
Nvidia

Comment Type T Comment Status A rewrite bucket
The PCS receives decode blocks

SuggestedRemedy
The PCS receive function decodes blocks?

Response
ACCEPT IN PRINCIPLE.

Nicholl, Gary
Cisco Systems

Comment Type ER Comment Status A rewrite bucket
The first several sub-sections of 155.3.1 appear to repeat the same format as section 155.1. It appears that this overview information for the PCS sublayer is in 155.1 and the same overview information for the PMA sublayer is in 155.3.

SuggestedRemedy
I would propose to delete section 155.1., and put all of the corresponding overview information into either the PCS section (155.2) or the PMA section (155.3) respectively.

Response
ACCEPT IN PRINCIPLE.

Law, David
Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket
Since [1] the subclause of 156.5 'PMD functional specifications' lists more than just a transmit and receive function, and [2] to parallel the text 'The PMD allows the 400GBASE-ZR PCS (specified in 155.2) ...’, suggest that ‘... media-independent way to a coherent transmitter and receiver specified in Clause 156.’ should be changed to read ‘... media-independent way to the 400GBASE-ZR PMD (specified in 156).’.

SuggestedRemedy
See comment.

Response
ACCEPT IN PRINCIPLE.
Cl 155 SC 155.3.1.1 P 49 L 11 # 478
Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
The interfaces for the inputs of
SuggestedRemedy
The interfaces of ?
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.1.2 P 49 L 16 # 481
Dawe, Piers Nvidia
Comment Type E Comment Status A rewrite bucket
relationship with
SuggestedRemedy
relationship to Also 156.1
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.1.3 P 49 L 23 # 75
Ran, Adee Cisco
Comment Type T Comment Status A rewrite bucket
The term "symbol" seems to be overloaded in the PMA subclause, sometimes meaning bit, other times an element of the set {-3, -1, +1, +3}, and other times a pair of such elements (DP-16QAM symbol).
This is confusing.
SuggestedRemedy
Define a clear terminology (e.g. bits, quaternary symbols, DP-16QAM symbols) and apply it across 155.3.
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.1.3 P 49 L 51 # 544
Zimmerman, George CME Consulting/APL Group, Cisco, Commscope, Ma
Comment Type E Comment Status A rewrite bucket
Figure 155-10 is separated from the text which describes it, by the intervening description of the service interface.
SuggestedRemedy
Beat on frame, and move the figure 155-10 be after 155.3.1.3 and before 155.3.2 (one way to do this may be forcing a page break before 155.3.2)
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.1.3 P 51 L 3 # 479
Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
"m is ... the number of bits of resolution of the DP-16QAM symbols"
SuggestedRemedy
Is a symbol for one polarisation or both? Is this off by 2?
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.1.3 P 51 L 13 # 480
Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
Align CFEC and FAW/TS symbols (X) remove
SuggestedRemedy
Align CFEC and remove FAW/TS symbols (X) ?
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.
This figure is supposed to be a functional block diagram, not an implementation diagram. There are no characteristics for the DAC blocks defined in the specification. The closest thing in the text is 155.3.3.4 which are called the 16QAM encode and signal drivers. However, most other 802.3 PHY clauses leave out signal drivers, DACs and the like, and there are no specific requirements in 155.3.3.4, so deleting the blocks seems the right approach to making a functional block diagram.

Suggested Remedy

Preferably, delete the "DAC" blocks from Figure 155-10 (going straight to the output is fine). Alternatively, relabel "16QAM Encoder and Signal Driver" (probably drawing as 2 blocks since you show I&Q paths).

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
encoded DP-16QAM symbols between the PCS and PMA sublayer. The 400GBASE-ZR PMA service interface is defined in 155.3.2.

- Change the last paragraph of subclause 155.2.4.11 ‘Hamming SD-FEC encoder’ to read:

The 128-bit code words are sent as 8-bit encoded DP-16QAM symbols to the 400GBASE-ZR PMA sublayer using sixteen PMA_UNITDATA.request messages.

- Change the text ‘... by PMA:IS_UNITDATA_0.indication to PMA:IS_UNITDATA_m-1.indication inter-sublayer signals.’ to read ‘... by the PMA_UNITDATA.indication primitive.’ in subclause 155.2.5.1 ‘Hamming SD-FEC decoder’.

- Change subclause 155.3.2 ‘400GBASE-ZR PMA service interface’, adding new subclauses 155.3.2.1 through 155.3.2.2.3, to read:

155.3.2 400GBASE-ZR PMA service interface

The 400GBASE-ZR PMA Service Interface supports the exchange of encoded DP-16QAM symbols between the PCS and PMA sublayer. The inter-sublayer 400GBASE-ZR PMA service interface is described in an abstract manner and does not imply any particular implementation. The inter-sublayer service interface primitives are defined as follows:

PMA_UNITDATA.request
PMA_UNITDATA.indication
PMA_SIGNAL.indication

The PMA_UNITDATA.request primitive is used to define the transfer of a DP-16QAM symbol from the 400GBASE-ZR PCS to the 400GBASE-ZR PMA. The PMA_UNITDATA.indication primitive is used to define the transfer of a DP-16QAM symbol from the 400GBASE-ZR PMA to the 400GBASE-ZR PCS. The PMA_SIGNAL.indication primitive is used to define the transfer of signal status from the 400GBASE-ZR PMA to the 400GBASE-ZR PCS.

155.3.2.1 PMA_UNITDATA.request

This primitive defines the transfer of encoded DP-16QAM symbols in the tx_symbol parameter from the 400GBASE-ZR PCS to the 400GBASE-ZR PMA.

155.3.2.1.1 Semantics of the primitive

PMA_UNITDATA.request (tx_symbol)

During transmission, the PMA_UNITDATA.request simultaneously conveys 8 bits of a 128-bit code word generated by the SD-FEC encoder (see 155.2.4.11) representing an encoded DP-16QAM symbol to the PMA. The encoding used for the in-phase and quadrature-phase components of the X and Y polarization is defined in subclause 155.3.3.1.

155.3.2.1.2 When generated

The PCS generates sixteen PMA_UNITDATA.request messages for each 128-bit code word from the PCS SD-FEC encoder. The messages convey the least significant octet C<7:0> first, most significant octet C<127:120> last, with code word bits C<<7:n> mapped to tx_symbol<7:0>. The nominal rate of PMA_UNITDATA.indication messages is 57.78 GBd.

155.3.2.1.3 Effect of receipt

The PMA continuously forms the tx_symbol parameters received in sixteen consecutive PMA_UNITDATA.indication messages into 128-bit code words that are passed to the PMA Gray mapping and polarization distribution function (see 155.3.3.1).

155.3.2.2 PMA_UNITDATA.indication

This primitive defines the transfer of encoded DP-16QAM symbols in the rx_symbol parameter from the 400GBASE-ZR PMA to the 400GBASE-ZR PCS.

155.3.2.2.1 Semantics of the primitive

PMA_UNITDATA.indication (rx_symbol)

During reception, the PMA_UNITDATA.indication simultaneously conveys m bits of an n-bit code word generated by the symbol de-interleaving function (see 155.3.3.8) representing an encoded DP-16QAM symbol to the 400GBASE-ZR PCS where m is implementation dependent, representing the number of bits of the encoded DP-16QAM symbol, and n = 16 x m.

155.3.2.2.2 When generated

The PMA generates sixteen PMA_UNITDATA.indication messages for each n-bit code word generated by the PMA symbol de-interleaving function. The messages convey the least significant m bits of the n-bit code word first. The nominal rate of PMA_UNITDATA.indication messages is 57.78 GBd.

155.3.2.2.3 Effect of receipt

The PMA continuously forms the rx_symbol parameters received in sixteen consecutive PMA_UNITDATA.indication messages into n-bit code words that are passed to the PCS Hamming SD-FEC decoder function (see 155.2.5.1).

155.3.2.3 PMA_SIGNAL.indication

This primitive defines the transfer of the status of the PMA receive process in the SIGNAL_OK parameter from 400GBASE-ZR PMA to the 400GBASE-ZR PCS.
155.3.2.3.2 When generated
The PMA generates a PMA_SIGNAL.indication message whenever there is change in the
value of the SIGNAL_OK parameter (see 155.3.3.9).

155.3.2.2.3 Effect of receipt
The PCS Synchronization process monitors the PMA_SIGNAL.indication primitive for a
change in the SIGNAL_OK parameter (see 155.2.1).

- Move the last paragraph of the current subclause to a new subclause 155.3.3.9 titled
'Signal Indication Logic (SIL)'.

- Change the last paragraph of subclause 155.3.3.8 'Polarization combining and symbol de-
interleaving' to read:
The sixteen encoded DP-16QAM symbols are transferred to the 400GBASE-ZR PCS
sublayer as m-bit DP-16QAM symbols using sixteen PMA_UNITDATA.indication
messages.

- Change 'PMA:IS_UNITDATA_0.request to PMA:IS_UNITDATA_7.request' to read
'PMA_UNITDATA.request' and 'PMA:IS_UNITDATA_0.indication to
PMA:IS_UNITDATA_m-1.indication' to read 'PMA_UNITDATA.indication' in Figure 155-2
'Functional block diagram'.

- Change 'PMA:IS_UNITDATA_0.request to PMA:IS_UNITDATA_7.request' to read
'PMA_UNITDATA.request' and 'PMA:IS_UNITDATA_0.indication to
PMA:IS_UNITDATA_m-1.indication' to read 'PMA_UNITDATA.indication' in Figure 155-10
'400GBASE-ZR PMA functional block diagram'.

Response Response Status W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket
Since subclause 155.3.2 only summarizes the primitives, a cross reference to where they
are defined should be added.

SuggestedRemedy
Suggest that 'The 400GBASE-ZR PMA service interface is provided ...' should be changed
to read 'The 400GBASE-ZR PMA service interface (see 155.1.4.2) is provided ...'.

Response Response Status C rewrite bucket
ACCEPT IN PRINCIPLE.

See response to comment #346.

Ran, Adee Cisco

Comment Type T Comment Status A rewrite bucket
"The primitives are defined for i = 0 to 7, and for j = 0 to m-1, where m is the number of bits
of resolution of the received digitized DP-16QAM symbols"
The next paragraph says the nominal signaling rate is approximately 57.78 Gb/s in the
transmit side and 57.78 GBd in the receive side.
Each DP-16QAM symbol corresponds to 4 bits, so with this definition, the rate of the
receive direction DP-16QAM symbols should be a quarter of the transmit direction bit rate.
Alternatively m should be the number of bits of resolution per bit of information.
The meaning of tx_symbol and rx_symbol is unclear in this subclause, and may be
changed e.g. if the tx_symbols are defined as Gray-coded PAM4 symbols or SD-FEC
encoder codewords (suggested by another comments).

SuggestedRemedy
Rewrite this subclause as necessary such that the meaning of tx_symbol and rx_symbol is
clear, and the rates match the meaning.

Response Response Status C rewrite bucket
ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>Comment</th>
<th>Type</th>
<th>Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.3.2</td>
<td>P 50 L 16</td>
<td>TR</td>
<td>A</td>
<td>rewrite bucket</td>
</tr>
<tr>
<td>* ~50.212875 Gb/s: ~ too vague, signaling rate should be in GBD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Remedy
- Specify the rate without approximation

Response
- Response Status: W
- ACCEPT IN PRINCIPLE.
- See response to comment #346.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>Comment</th>
<th>Type</th>
<th>Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.3.2</td>
<td>P 50 L 16</td>
<td>T</td>
<td>A</td>
<td>rewrite bucket</td>
</tr>
<tr>
<td>Why is the approximate sign used in the term "(512/511) x (5485/5140) x (5488/5485) x (128/119) x ~50.212875 Gb/s ?20 ppm"? Isn't the nominal signalling rate known exactly? I don't remember seeing the "approximate" sign used in other IEEE standards when referring to the nominal signaling rate?</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Remedy
- This is more of a question of clarification?

Response
- Response Status: C
- ACCEPT IN PRINCIPLE.
- See response to comment #346.

<table>
<thead>
<tr>
<th>CI</th>
<th>SC</th>
<th>Comment</th>
<th>Type</th>
<th>Status</th>
<th>Response</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.3.2</td>
<td>P 50 L 16</td>
<td>E</td>
<td>A</td>
<td>rewrite bucket</td>
</tr>
<tr>
<td>There is a rectangle to the right of the 'Carrier phase recovery', 'PMD equalizer' and 'chromatic dispersion equalizer' within the 400GBASE-ZR PMA sublayer box in Figure 155-10 '400GBASE-ZR PMA functional block diagram' that is unlabelled.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Suggested Remedy
- Either label the rectangle or delete it.

Response
- Response Status: C
- ACCEPT IN PRINCIPLE.
- See response to comment #346.
Subclause 155.3.3.4.1 says that 'All of the coherent signal to physical lane mappings in Table 155-7 are allowed for the Tx signal. This is because receivers can determine which physical lane is carrying which signal based on the contents of the FAW.' As a result, it seems that the in-phase and quadrature-phase components of the X and Y polarizations can be mapped to the receive PMD service interface primitives in any of the eight ways listed in Table 155-7.

Further, subclause 155.3.3.7 'FAW, TS, and PS symbol removal' says 'The 400GBASE-ZR PMA receive path attains alignment lock to the 22-symbol FAW that is transmitted on each of the two transmission polarizations on the in-phase and quadrature-phase lanes.' and 'When the X and Y polarization symbol streams are identified and aligned to the super-frame format of Figure 155-12, the FAW, TS, and PS symbols are removed ...'. As a result, it seems the X and Y polarizations identification is performed by the FAW lock function, and pilot removal occurs after the FAW lock function.

Suggested Remedies

1. Suggest that the labels 'IX', 'QX', 'IY' and 'QY' be removed from below the 'ADC' block in Figure 155-10.

2. Suggest that the Pilot removal (X) Pilot removal (Y) block be removed from Figure 155-10.

3. Suggest that the label 'Align CFEC and FAW/TS symbols (X) remove' be changed to read:

 FAW alignment
 Remove FAW, PS, TS symbols

4. Suggest that the label 'Align CFEC and FAW/TS symbols (Y) remove' be changed to read:

 FAW alignment
 Remove FAW, PS, TS symbols

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
Subclause 155.3.2 '400Gbase-ZR PMA service interface' says that 'The PMA:IS_SIGNAL.indication primitive is generated through a signal indication logic (SIL) that reports signal health based on receipt of the PMD:IS_SIGNAL.indication from the 400Gbase-ZR PMD sublayer, data being processed successfully by the signal processing functions, and symbols being sent to the PCS on all of the output lanes.' however subclause 156.5.4 'PMD global signal detect function' says that 'The PMD global signal detect function shall set the state of the SIGNAL_DETECT parameter to a fixed OK value.' and that 'The presence of a valid signal is determined only by the 400Gbase-ZR PCS (see 155.2.1).'. In addition, subclause 155.2.1 says 'The PCS Synchronization process continually monitors PMA:IS_SIGNAL.indication[SIGNAL_OK]. When SIGNAL_OK indicates OK, then the PCS Synchronization process accepts the streams of symbols via the PMA:UNIDATA_i.indication primitive.'.

Based on the signal indication logic (SIL) contained in the PMA sublayer described in subclause 155.3.2, and subclause 155.2.1 describing only the use of the SIGNAL_DETECT parameter in the PCS sublayer, it doesn't seem correct to say in subclause 156.5.4 that a valid signal is determined only by the PCS sublayer. And based on subclause 156.5.4 setting the SIGNAL_DETECT parameter of the PMD:IS_SIGNAL.indication to a fixed 'OK' value, it doesn't seem correct to say that the SIL will report signal health based on the PMD:IS_SIGNAL.indication primitive since it is fixed.

SuggestedRemedy

Suggest that:

1. The PMD:IS_SIGNAL.indication primitive is disconnected from the SIL box in figure 155-10 and is shown as not used by the PMA sublayer.

2. In subclause 155.3.2 the text ‘... reports signal health based on receipt of the PMD:IS_SIGNAL.indication from the 400Gbase-ZR PMD sublayer, data being processed successfully by the signal...’ be changed to read ‘... reports signal health based on data being processed successfully by the signal...’.

3. In subclause 155.5.4 the text 'The presence of a valid signal is determined only by the 400Gbase-ZR PCS (see 155.2.1).' should be changed to read 'The presence of a valid signal is determined only by the SIL function in the PMA (see 155.3.2).'.

Response

Response Status W

ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Dawe, Piers Nvidia
Comment Type T Comment Status A rewrite bucket
I don't see any loopback here. The only test signal comes from the PCS.

SuggestedRemedy
Delete "and optionally to provide test signals and loop-back"
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Law, David Hewlett Packard Enterprise
Comment Type T Comment Status A rewrite bucket
Subclause 155.3.3 'Functions within the PMA' says "... elements of a symbol, namely IX, QX, IY, or QY, ...", referencing IX, QX, IY, and QY as 'elements' of a DP-16QAM symbol.
Subclause 155.3.3.1 'Gray mapping and polarization distribution' says "(-c8i, c8i+1) maps to the in-phase (I) component of the X-polarization of s'" referencing IX, QX, IY, and QY as "components" of a DP-16QAM symbol.
SuggestedRemedy
Suggest that either 'element' or 'component' be used consistently to describe IX, QX, IY, and QY used to form a DP-16QAM symbol.
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Law, David Hewlett Packard Enterprise
Comment Type T Comment Status A rewrite bucket
It is not clear how the "Gray-coded symbol" defined here is used in the remainder of the process - the subsequent DP-16QAM mapping is defined in terms of bits, not symbols.
SuggestedRemedy
Consider defining the Gray code mapping as a function from bit-pairs to bit-pairs, instead of the set {-3, -1, +1, +3}, or removing it completely since it is embedded it in the mapping defined in Table 155-2.
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Dawe, Piers Nvidia
Comment Type TR Comment Status A rewrite bucket
This says the PMA does Gray de-mapping then it says it doesn't the PCS does it.
SuggestedRemedy
Remove lines 20-25, add appropriate material to PCS section.
Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.
"Note that the receive process mapping of Gray-coded signals is applicable only after the SD-FEC decoder process in the 400GBASE-ZR PCS."

This means that the Gray de-mapping function is not part of the PMA but part of the PCS; indeed, the service interface of the PMA is based on ADC samples, not bits, and the Gray de-mapping does not appear in Figure 155-10, because it cannot be performed until SD-FEC decoding (in the PCS) is completed.

Similarly, the Gray mapping in the Tx direction logically belongs in the PCS, because its output is Gray-coded symbols.

SuggestedRemedy

Possibly, move the content of the Gray mapping function to the PCS (retaining the polarization distribution in the PMA).

Or find another way to cleanly separate these functions.

Response

Response Status: C

ACCEPT IN PRINCIPLE.

See response to comment #346.

"Each 128-bit code word from the SD-FEC encoder c = [c0, c1,...,c127], is mapped to sixteen DP-16QAM symbols (S)."

Does the PMA have to be aligned with the SD-FEC encoder codewords?

If so, the alignment function is not defined; it may be more appropriate to define the service interface in the Tx direction in terms of 128-bit codewords instead of bits on 8 lanes, such that the alignment is inherent.

If not, please clarify that the 128-bit blocks start point within the SD-FEC codeword is arbitrary.

A similar question holds for the Rx direction (based on the text in 155.3.3.8) - is the alignment of SD-FEC defined as a PMA function or a PCS function?

SuggestedRemedy

From 155.3.3.2 it seems that alignment is necessary, so the service interface should be defined with 128-element vectors (instead of lanes), and perhaps use tx_word instead of tx_symbol and rx_word instead of rx_symbol.

Response

Response Status: C

ACCEPT IN PRINCIPLE.

See response to comment #346.

"The received symbol signals are digitized into more than 4 discrete levels by the analog to digital converters (ADC) in the PMA sublayer and the number of bits for each signal is m/4 bits." This is a description of an implementation and is inappropriate for an interoperability standard. If some description is needed, one could rewrite this more generally, as is suggested in the remedy. Further, it appears that the "m/4 bits" is a detail that is unused in the draft (I searched). If it is used somewhere, please provide a pointer to where it is relevant. Otherwise delete the unnecessary detail which looks like a specification but isn't.

SuggestedRemedy

Preferably - delete the indicated sentence.

Alternatively, change the indicated sentence to read "The received symbol signals are sampled and quantized in the PMA sublayer."

If the m/4 bits is used somewhere, provide a reference.

Response

Response Status: W

ACCEPT IN PRINCIPLE.

See response to comment #346.
<table>
<thead>
<tr>
<th>Cl</th>
<th>SC</th>
<th>P</th>
<th>L</th>
<th>#</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Suggested Remedy</th>
<th>Response</th>
<th>Response Status</th>
<th>Comment Type</th>
<th>Comment Status</th>
<th>Suggested Remedy</th>
<th>Response</th>
<th>Response Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>155</td>
<td>155.3.3.1</td>
<td>52</td>
<td>32</td>
<td>236</td>
<td>ER</td>
<td>A</td>
<td>rewrite bucket</td>
<td>The terms 'DP-16QAM symbol' (e.g., page 52, line 32 and line 48), 'Gray-coded signals' (e.g., page 52, line 44) and 'Gray mapped' symbols (e.g., page 54, line 29) seem to be used interchangeably in the subclauses of 155.3.3 'Functions within the PMA'. For example, subclause 155.3.3.2 Symbol interleaving' says 'The DP-16QAM symbols are time interleaved ...' yet the following subclause 155.3.3.3 'Insert FAW, TS and PS symbols' says '... the stream of Gray mapped, interleaved symbols are ...'. It, however, appears the 'symbols' in both cases are the same. Suggested Remedy Suggest that a consistent terminology should be used for DP-16QAM symbols.</td>
<td>ACCEPT IN PRINCIPLE. See response to comment #346.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>155.3.3.2</td>
<td>52</td>
<td>54</td>
<td>239</td>
<td>T</td>
<td>A</td>
<td>rewrite bucket</td>
<td>On page 52, line 54, the symbol number is in normal font whereas it is in subscript font in the remainder of subclause 155.3.3.2. Suggested Remedy Suggest that, based on page 52, line 54, the symbol number should be in normal rather than subscript font in the rest of the subclause to make it clear the two numbers following 'S' separated by a comma are the code word number followed by the symbol number in the code word. Alternatively, perhaps it should be stated that two numbers following 'S' separated by a comma are the code word number followed by the symbol number in the code word.</td>
<td>ACCEPT IN PRINCIPLE. See response to comment #346.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>155</td>
<td>155.3.3.2</td>
<td>53</td>
<td>33</td>
<td>240</td>
<td>TR</td>
<td>A</td>
<td>rewrite bucket</td>
<td>Doesn't the symbol interleaving operate on groups of sixteen DP-16QAM symbols, mapped from the 128-bit SD-FEC codewords passed across the PMA service interface, as described in subclause 155.3.3.1. Suggested Remedy Suggest that the text 'The symbol interleaver performs an 8-way interleaving of symbols from Hamming code words ...' be changed to read 'The symbol interleaver performs an 8-way interleaving of groups of sixteen symbols mapped from SD-FEC codewords ...'. Response ACCEPT IN PRINCIPLE. See response to comment #346.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.3.3.2 P 53 L 34 # 215
Huber, Thomas Nokia
Comment Type TR Comment Status A rewrite bucket
The intended interleaving is that first symbol of each of 16 codewords is transmitted, then the second symbol, etc. The example is not consistent with that - S(1,1) should follow S(0,1) rather than S(0,2) (as seen in figure 155-11).
SuggestedRemedy
Change S0,2 to S1,1
Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.2 P 54 L 11 # 216
Huber, Thomas Nokia
Comment Type T Comment Status A rewrite bucket
There is a horizontal line missing between the second and third sets of symbols in Figure 155-11
SuggestedRemedy
Add the missing line
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.3 P 54 L 27 # 241
Law, David Hewlett Packard Enterprise
Comment Type TR Comment Status A rewrite bucket
There is no specification of how the output from PAM symbol interleaving function is mapped into the payload fields of the sub-frame of a super-frame.
SuggestedRemedy
Add a subclause to describe how the output of the PAM symbol interleaving function is mapped into the payload fields of the sub-frame of a super-frame.
Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.3 P 54 L 31 # 242
Law, David Hewlett Packard Enterprise
Comment Type T Comment Status A rewrite bucket
Subclause 155.3.3 'Insert FAW, TS and PS symbols' however says 'A super-frame is defined as a set of 181 888 symbols in each of the X and Y polarizations including'. Since a separate super-frame for each of the X and Y polarizations, the 'symbols' seem to be 16QAM symbols rather than DP-16QAM symbols.
SuggestedRemedy
Suggest that the text 'A super-frame is defined as a set of 181 888 symbols in each of the X and Y polarizations including 175 616 payload symbols and 6272 additional symbols.' be changed to read 'A super-frame is defined as a set of 181 888 16QAM symbols for each of the X and Y polarizations including 175 616 payload 16QAM symbols and 6272 additional 16QAM symbols.'.
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.3 P 54 L 32 # 137
Nicholl, Gary Cisco Systems
Comment Type E Comment Status A rewrite bucket
The sentence states "Each super-frame is made up of 49 sub-frames". This is unusual terminology as a super-frame (or multi-frame) is usually made of n frames (and not -sub-frames). This also begs the question as to why "super-frame" is used instead of the more usual "multi-frame"
SuggestedRemedy
Propose changing "super-frame" to "multi-frame" and "sub-frame" to "frame" throughout this section. An alternative would be to use "frame" and "sub-frame".
Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment Type TR Comment Status A rewrite bucket
The second paragraph of subclause 155.3.3.3 'Insert FAW, TS and PS symbols' says 'The first sub-frame of a super-frame includes ... 76 reserved symbols (rsvd<0:75>) ...', however, there is no specification of what 16QAM symbol should be transmitted for these reserved symbols.

SuggestedRemedy
Define the 16QAM symbol to be transmitted for these 76 reserved symbols.

Response
Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type TR Comment Status A rewrite bucket
The third paragraph of subclause 155.3.3.3 'Insert FAW, TS and PS symbols' says that 'The next 48 sub-frames of the super-frame have an 11-symbol TS (ts<0:10>), 116 PS symbols [P0, .,P115], and 3586 payload symbols.' which seems to imply that sub-frames 1 through 48 are all the same formats. Figure 155-12, however, shows 31 symbols after P0 for sub-frame 1, yet 42 symbols after P0 for sub-frame 48. Similarly, Figure 155-12 shows 31 symbols after P1 for sub-frame 1, yet 32 symbols after P1 for sub-frame 48. And if sub-frame 1 and sub-frame 48 are different formats, what are the formats for sub-frames 2 through 47.

The 31 symbols after P0 shown for sub-frame 1 in Figure 155-12 are ts<0:10>, but P0 overlaps ts<0>, so this is 10 bits, followed by m<3488:3508> which is 21 bits resulting in a total of 31 bits. The 42 symbols after P0 shown for sub-frame 48 in Figure 155-12 are ts<0:10>, but P0 overlaps ts<0>, so this is 10 bits, followed by m<172 030:172 061> which is 32 bits, resulting in a total of 42 bits. The 31 symbols after P1 shown for sub-frame 1 in Figure 155-12 are m<3509:3539>, the 32 symbols after P1 shown for sub-frame 48 in Figure 155-12 are m<172 062:172 093>.

SuggestedRemedy
If sub-frames 1 through 48 are not the same format, specify which sub-frames are in what format. If they are in the same format, correct the figure to show the correct number of bits.

Response
Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.
While sub-frames 1 and 48 are annotated with 3 and 0 in P0, sub-frames 0 doesn't have this annotation. In addition, it isn't clear what the 3 to 0 signifies, perhaps that each DP-16QAM symbol has four components, but subclause 155.3.3.3 (page 54, line 29) says 'For each polarization, the stream of Gray mapped, interleaved symbols are assembled into a frame format suitable for transmission over ...' which seems to imply a separate frame for each polarization.

Suggested Remedy
Either remove the 3 to 0 annotation for sub-frames 1 and 48 or add to sub-frames 0 and define the meaning.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

Subclause 155.3.3.3 'Insert FAW, TS and PS symbols' says 'The super-frame and sub-frame formats are shown in Figure 155-12.', however the title of Figure 155-12 'Transmission frame and sub-frame organization and bit ordering' and there doesn't seem to be any illustration of a super-frame.

Suggested Remedy
[1] Suggest the title of Figure 155-12 be changed to read 'Super-frame and sub-frame organization and bit ordering'.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

The PS is a fixed PRBS10 sequence mapped to 16QAM symbols with different seed values for X and Y polarizations. The generator for the pilot sequence is shown in Figure 155-13

Is it two separate PRBS sequences with different seeds?

Also it is unclear how bits are mapped to the I and Q values in Table 155-6.

Suggested Remedy
Rewrite to clarify.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.
Subclause 155.3.3.3.3 'Pilot sequence (PS)' says that 'The seed is reset at the start of every sub-frame ...'. Isn't it the generator that is reset at the start of every sub-frame using the seed value?

Suggested Remedy

Suggest that the text 'The seed is reset at the start of every sub-frame, so that the same ...' be changed to read 'The generator is initialized using the seed at the start of every sub-frame, so that the same ...

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.3.3.3

P 57 L 10 # 274

Law, David
Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket

Since the abbreviation 'PS' is 'pilot sequence' the text '... PS sequence ...' expands to '... pilot sequence sequence ...'.

SuggestedRemedy
Suggest the text '... the complete PS sequence is ...' be changed to read '... the complete PS is ...'.

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.3

P 57 L 12 # 275

Law, David
Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket

Add an arrow head to the line from P8, P4 and P3 where they connect to the XOR logic operator symbol.

SuggestedRemedy
See comment.

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.3

P 57 L 14 # 486

Dawe, Piers
Nvidia

Comment Type E Comment Status A rewrite bucket

There appear to be two separate tables number 155-6, the first labelled 'Table 155-5-PS generator polynomial and seed values', the second labelled 'Table 155-6-PS'.

SuggestedRemedy
[1] Suggest that the second Table 155-6 'PS' be renumbered to be 155-7, with subsequent tables renumbered, and its title should be [2] Suggest that the title of the second Table 155-6 should be changed from 'PS' to read 'Pilot sequence'.

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.3.3.4

P 58 L 30 # 277

Law, David
Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket

The title of subclause 155.3.3.4 is '16QAM encode and signal drivers' however I don't think IEEE P802.3cw specifies a physical instantiation of the PMD service interface, and I don't see any text related to signal drivers in subclause 155.3.3.4. Perhaps it would be better to reference the DAC (see Figure 155-10) to parallel the title of subclause 155.3.3.5 below.

SuggestedRemedy
Suggest that the title of subclause 155.3.3.4 is changed to read '16QAM encode and DAC'.

Response Response Status C
ACCEPT IN PRINCIPLE.
See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment Type: TR
Comment Status: A
rewrite bucket

The first sentence states "On each polarization, the stream of symbols is converted to four analog signals per symbol: IX, QX, IY, and QY.....". This makes it sound like that they are four analog signals per symbol per polarization (making 8 in total).

I thought IX and QX formed one 16QAM symbol on one polarization (the X polarization) and IY and QY formed one 16QAM symbol for the other polarization (the Y polarization).

SuggestedRemedy
Rewrite the text to make it clear that there are not four analog signals (IX, QX, IY, QY) for each polarization (which would mean 8 analog signals in total), but instead there are two analog signals (IX, QX) per symbol for the X polarization and two analog signals (IY, QY) per symbol for the Y polarization.

Response
Response Status: W
ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment Type: E
Comment Status: A
rewrite bucket

The title says "Symbol mapping to physical lanes", but in the text it is "coherent signal to physical lane mappings".

SuggestedRemedy
Change "Symbol mapping to physical lanes", but in the text it is "coherent signal to physical lane mappings".

Response
Response Status: C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment Type: ER
Comment Status: A
rewrite bucket

The last sentence states ". which correspond to the inter-sublayer signals PMD:IS_UNITDATA_0.request ..". I presume in this case we are talking about the inter-sublayer signals below the PMA (PMD service interface) and not the inter-sublayer signals above the PMA. (PMA service interface).

SuggestedRemedy
Update the text to make it clear that the "inter-sublayer signals" being referred to are below the PMA, or alternatively just refer to the PMD service interface directly.

Response
Response Status: W
ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Comment Type TR Comment Status A rewrite bucket
"The signals are sampled by an ADC on each lane at a sampling rate." "The details of the ADC are implementation specific". This is a description of an implementation, not appropriate for an interoperability specification. If someone could do the signal processing optically, analog, or by magic, it would still comply with the standard. The fact that an ADC is used, isn't a part of the interoperability standard, or even any of the characteristics of the ADC. Hence the mention is inappropriate and should be deleted. The sentence works just fine anyways and describes the processing without the "by an ADC".

SuggestedRemedy
Change header of 155.3.5 to Receive signal sampling.
On line 50, Delete "by an ADC"
Change line 54 to "The details of the sampling, including any quantization and the chosen sampling rate are implementation specific."
Replace "ADC" with "Sampler" in figure 155-10.

Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type TR Comment Status A rewrite bucket
"The signals are sampled by an ADC on each lane at a sampling rate." "The details of the ADC are implementation specific". This is a description of an implementation, not appropriate for an interoperability specification. If someone could do the signal processing optically, analog, or by magic, it would still comply with the standard. The fact that an ADC is used, isn't a part of the interoperability standard, or even any of the characteristics of the ADC. Hence the mention is inappropriate and should be deleted. The sentence works just fine anyways and describes the processing without the "by an ADC".

SuggestedRemedy
Change header of 155.3.5 to Receive signal sampling.
On line 50, Delete "by an ADC"
Change line 54 to "The details of the sampling, including any quantization and the chosen sampling rate are implementation specific."
Replace "ADC" with "Sampler" in figure 155-10.

Response Response Status W
ACCEPT IN PRINCIPLE.
See response to comment #346.

TYPE: TR/technical required ER/editorial required GR/general required T/technical E/editorial G/general
COMMENT STATUS: D/dispatched A/accepted R/rejected RESPONSE STATUS: O/open W/written C/closed U/unsatisfied Z/withdrawn
SORT ORDER: Clause, Subclause, page, line

Page 49 of 71 10/19/2022 4:38:42 PM
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.3.3.8 P 60 L 4 # 87
Ran, Adee Cisco

Comment Type T Comment Status A rewrite bucket
"comprising sixteen symbols encoded as shown in Table 155-2 but at a higher resolution than 8 bits"

SD-FEC codewords are by definition 128 bits; and table 155-2 shows mapping of bit tuples into output symbols.

Also, according to the next paragraph, the output of the process is a single stream of samples, not codewords.

This text seems to specify that the input to the decoder should be four streams of samples (combinations of X/Y and I/Q) with more than two bits per sample.

SuggestedRemedy
Rewrite to clarify.

Response
Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.4.2 P 60 L 22 # 88
Ran, Adee Cisco

Comment Type E Comment Status A rewrite bucket
The subclause hierarchy below "State variables" is unnecessary, and includes subclauses that are not about state variables (155.4.2.2 through 155.4.2.4)

SuggestedRemedy
Delete 155.4.2 and move its subclauses upper in the hierarchy (to become 55.4.2 through 155.4.5).

Response
Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.4.2.1 P 60 L 29 # 280
Law, David Hewlett Packard Enterprise

Comment Type T Comment Status A rewrite bucket
Assuming this is a boolean variable, suggest this should be noted in the variable description, as with other boolean variables.

SuggestedRemedy
Suggest that 'A variable set by the ...' should read 'A boolean variable set by the ...'.

Response
Response Status C
ACCEPT IN PRINCIPLE.

See response to comment #346.
Definition of "pma_alignment_valid" variable. Reading the previous text it is not clear exactly what constitutes a PMA lane, and how many PMA lanes there are, and how each PMA lane is assigned a unique lane number? The definition also refers to "PMA lanes are deskewed". I don't see any mention of PMA lane deskew in the functional block diagram in Figure 155-10.

Suggested Remedy
Maybe this is all clearly defined earlier in the document. If so then the editors can reject this comment with a reference to the appropriate section of text. If not then the variable description needs to be updated to better reflect the functional descriptions earlier in this clause. This comment also applies to other variables defined in 155.4.2.1, that refer to "PMA lanes".

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

The description of the 'reset' variable says that it is 'A boolean variable that controls the resetting of the PCS and PMA sublayers' and that 'It is true whenever a reset is necessary including when reset is initiated from the MDIO ... and when the MDIO has put the PCS and PMA sublayers into low-power mode.'.

The PMA and PCS are separate MMDs (see Table 45-1). The PMA/PMD reset bit is 1.0.15 and the low power bit is 1.0.11, both found in PMA/PMD control 1 register. The PCS reset bit is 3.0.15 and the low power bit is 3.0.11, both found in the PCS control 1 register. Since these registers are in separate MMDs, and since their state is not communicate across the PMA service interface, the PMA and PCS resets can operate independently.

Suggested Remedy

[1] Rename the 'reset' variable used in Figure 155-14 'Frame alignment word (FAW) lock state diagram' to be 'pma_reset'.

[2] Rename the 'reset' variable used in Figure 155-15 'PMA deskew state diagram' to be 'pma_reset'.

[3] Rename the 'reset' variable used in Figure 155-16 'Alignment marker lock state diagram' to be 'pcs_reset'.

[4] Rename the 'reset' variable defined in subclause 155.4.2.1 'Variables' to be 'pma_reset' and change the description to read 'A Boolean variable that controls the resetting of the PMA sublayer. It is true whenever a reset is necessary including when reset is initiated from the MDIO, during power on, and when the MDIO has put the PMA sublayer into low-power mode.'.

[5] Add a definition of the 'pcs_reset' variable to subclause 155.4.2.1 'Variables' with the description 'A Boolean variable that controls the resetting of the PCS sublayer. It is true whenever a reset is necessary including when reset is initiated from the MDIO, during power on, and when the MDIO has put the PCS sublayer into low-power mode.'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
Subclause 155.4.2.1 'Variables' says 'The PMA:IS_SIGNAL.indication primitive is generated through a signal indication logic (SIL) that reports signal health based on ... symbols being sent to the PCS on all of the output lanes.' The SIGNAL_OK parameter of the PMA:IS_SIGNAL.indication primitive is, however, used to derive the signal_ok variable (page 60, line 45) which is used as an 'open arrow' entry condition to the "LOCK_INIT" state of the Figure 155-14 Frame alignment word (FAW) lock state diagram.

As a result, it appears that if the SIGNAL_OK parameter is ever set to FAIL, setting 'signal_ok' to FALSE, the figure 155-14 Frame alignment word (FAW) lock state diagram will enter the 'LOCK_INIT' state. I assume this will mean that symbols will not be sent to the PCS since the PMA will not have FAW alignment. This in turn will mean the condition 'symbols being sent to the PCS' for the SIL to set the SIGNAL_OK parameter to OK will not be met.

The PMA will then be locked in this condition permanently. The SIL cannot set the SIGNAL_OK parameter to OK until symbols are sent to the PCS. Yet symbols won't be sent to the PCS until the SIGNAL_OK parameter is set to OK.

Suggested Remedy
Please clarify the operation of the signal indication logic. Suggest, based on Figure 155-10, and the dotted line from the 'Carrier phase recovery block to the SIL', that the 'signal_ok' variable used by the Frame alignment word (FAW) lock state diagram should be based on the status of the blocks below the 'Pilot removal' blocks while the SIGNAL_OK parameter sent to the PCS should also use the FAW alignment status.

See also my other comment suggest separate 'pma_signal_ok' and 'pcs_signal_ok' variables.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

The description of the 'signal_ok' variable says 'A boolean variable that is set based on the most recently received value of PMA:IS_SIGNAL.indication(SIGNAL_OK),' however that is generated by the PMA, see last paragraph of subclause 155.3.2 400GBASE-ZR 'PMA service interface'.

Suggested Remedy
[1] Rename the 'signal_ok' variable used in Figure 155-14 'Frame alignment word (FAW) lock state diagram' to be 'pma_signal_ok'.
[2] Rename the 'signal_ok' variable used in Figure 155-16 'Alignment marker lock state diagram' to be 'pcs_signal_ok'.
[3] Rename the 'signal_ok' variable defined in subclause 155.4.2.1 'Variables' to be 'pcs_signal_ok' and change the description to read 'A Boolean variable that is set based on the most recently received SIGNAL_OK parameter of the PMA:IS_SIGNAL.indication primitive. It is true if the value was OK and false if the value was FAIL.'.
[4] Add a new variable 'pma_signal_ok' with the description 'A Boolean variable that is set by the signal indication logic (see 155.3.2.). It is true when symbols received from the PMD are being processed successfully by the signal processing, false otherwise.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

Definition of restart_lock begins by talking about how it affects all lanes, then states it activates when 15 FAWs fail to match, but doesn't clearly define that's 15 failures in a row on a single PMA lane.

Suggested Remedy
Change "fail to match" to "fail to match on a given PMA lane"

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.
Comment Type TR Comment Status A rewrite bucket

Definition of variable "faws_lock<x>". A number of issues here. Firstly the text states that "...receiver has detected the location of the FAW for a given lane on the PMA service interface...". There is no "FAW" on the "PMA service interface" (i.e. the interface above the PMA sublayer) as the FAW is inserted/removed by the PMA sublayer itself. I think what is meant here is the "PMD service interface" and not the "PMA service interface"? Secondly the description states "...where x=0-3". This suggests that there are four separate FAWs being locked to, whereas according to section 155.3.3.3 and Figure 155-10 there is only a single FAWs inserted per polarization, so one FAW for X polarization and one FAW for Y polarization.

SuggestedRemedy
Correct the reference to the PMD service interface (if the assumption in the comment is correct) and explain why there are 4 "faws_lock<x>" boolean variables when according to section 155.3.3.3 there are only two FAWs (one for X polarization and one for Y polarization)

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment Type ER Comment Status A rewrite bucket

Definition of "faw_valid". The references to "Table 155-3" and section "155.3.3.1" are not active cross-references.

SuggestedRemedy
Correct cross-references.

Response
ACCEPT IN PRINCIPLE.

See response to comment #346.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Cl 155 SC 155.4.2.1 P 61 L 11 # 288
Law, David Hewlett Packard Enterprise

Comment Type TR Comment Status A rewrite bucket
The definition of the 'faw_valid' variable says '... set to true if the received 22-symbol block is a valid FAW.' According to the super-frame format defined in subclause 155.3.3.3 the 22 FAW symbols are transmitted over a total of 23 symbols, as Pilot Sequence index P1 is inserted between the symbols faw<20> and faw<21> (see figure 155-12). As a result, a valid FAW will never be found in a received 22-symbol block, only in a received 23-symbol block after the 22nd symbol is deleted.

Suggested Remedy
If needed, clarify the definition of the 'faw_valid' variable to account for the P1 symbol inserted between the faw<20> and faw<21> symbols.

Response Response Status W ACCEPT IN PRINCIPLE.
See response to comment #346.

Cl 155 SC 155.4.2.1 P 61 L 14 # 13
Bruckman, Leon Huawei

Comment Type T Comment Status A rewrite bucket
Clause 155.3.3.3.1 defines FAW as a 22 symbol sequence, "bits" are not mentioned there

Suggested Remedy
For consistency replace: "The sequence is considered to be valid if at least 36 bits match the 44 known bits of the FAW pattern described in 155.3.3.3.1," with: "The sequence is considered to be valid if at least 18 symbols match the 22 known symbols of the FAW pattern described in 155.3.3.3.1."

Response Response Status C ACCEPT IN PRINCIPLE.
See response to comment #346.
The description of the variable ‘current_pmal’ says ‘The PMA lane number is determined by the FAW payloads based on the mapping defined in 155.3.3.3.1.’ and the description of the variable ‘pma_lane’ says ‘The PMA lane number is determined by matching the received 22-symbol sequence to the values in one of the columns of Table 155-3.’.

Subclause 155.3.3.3.1, nor Table 155-3, provide any lane numbers. The PMA lane number is not referenced outside the state diagrams, other than in Table 155-3 where pma_lane_mapping<xx> is mapped to register 3.400 through 3.403, which doesn’t seem correct as these are PCS lane registers, not PMA lane registers (see my other comment on this). As a result, rather than add PMA lane numbers to subclause 155.3.3.3.1 and/or Table 155-3, suggest references to ‘PMA lane numbers’ be changed to ‘PMA lane identifiers’ with the values ‘Ix’, ‘Qx’, ‘Iy’ and ‘Qy’. The state diagram can compare PMA lane identifiers to see if they match and can test for a unique PMA lane identifier for each PMA lane as easily as it can for PMA lane numbers.

In addition, the description of the ‘faw_valid’ variable says ‘The sequence is considered to be valid if at least 36 bits match the 44 known bits of the FAW pattern described in 155.3.3.3.1.’. The description of the variable ‘current_pmal’ however says ‘The PMA lane number is determined by the FAW payloads based on the mapping defined in 155.3.3.3.1.’. Similarly, the description of the variable ‘pma_lane’ says ‘The PMA lane number is determined by matching the received 22-symbol sequence to the values in one of the columns of Table 155-3.’. Neither mention the ‘36 out 44’ approach used for the ‘faw_valid’ variable.

The ‘current_pmal’ description could imply a requirement for a full match to a column of Table 155-3, and the ‘pma_lane’ description requires a full match to a column of Table 155-3. Since the entry into states where ‘current_pmal’ is used is based on faw_valid = TRUE, doesn’t this mean that the use of the ‘36 out 44’ approach, which permits 8 16QAM symbols to not match, needs to be considered when determining ‘current_pmal’ and ‘pma_lane’. As a worst-case example, couldn’t a faw_valid = TRUE result from eight 16QAM symbols not matching due to errors on just one phase of just one polarization. This would seem to imply that the compare for the values received on a lane with the columns of Table 155-3 also needs to permit eight values not matching.

In the case of ‘current_pmal’ and ‘pma_lane’, as there are only 22 values in a column of Table 155-3, it would seem a match would have to be valid if at least 14 values received on the lane match the 22 known values defined in a column to address the worst-case of all eight errors on one phase of one polarization. It seems there may, however, be another approach to determine ‘current_pmal’ and ‘pma_lane’. As a worst-case example, couldn’t a faw_valid = TRUE result from eight 16QAM symbols not matching due to errors on just one phase of just one polarization. This would seem to imply that the compare for the values received on a lane with the columns of Table 155-3 also needs to permit eight values not matching.

Finally, as this variable is used by a state diagram within the PMA, which sits above the PMD, the text ‘... is recognized on a given lane of the PMA service interface.’ should read ‘... is recognized on a given lane of the PMD service interface.’.

A variable that holds the PMA lane identifier corresponding to the first FAW sequence that is recognized on a given lane of the PMD service interface. It is compared to the PMA lane identifier corresponding to the next FAW payload that is tested. The PMA lane identifier is the value for the given lane in the row of Table 155-7 that defines the PMD service interface lane mapping used to find the match for the current FAW sequence as described in the faw_valid variable.

Values:
Ix: Value for given lane from mapping used in Table 155-7 to find the current FAW sequence is XI.
Qx: Value for given lane from mapping used in Table 155-7 to find the current FAW sequence is XQ.
Iy: Value for given lane from mapping used in Table 155-7 to find the current FAW sequence is YI.
Qy: Value for given lane from mapping used in Table 155-7 to find the current FAW sequence is YQ.

A variable that holds the PMA lane identifier received on lane x of the PMD service interface when faws_lock<xx> = TRUE. The PMA lane identifier is determined by matching the received 22-symbol FAW sequence to the values in one of the columns of Table 155-3. The PMA lane identifier is the value for the given lane in the row of Table 155-7 that defines the PMD service interface lane mapping used to find the match for the current FAW sequence as described in the faw_valid variable.

Values:
See first_pmal.

A variable that holds the PMA lane identifier received on lane x of the PMD service interface when faws_lock<xx> = TRUE. The PMA lane identifier is determined by matching the received 22-symbol FAW sequence to the values in one of the columns of Table 155-3. The PMA lane identifier is the value for the given lane in the row of Table 155-7 that defines the PMD service interface lane mapping used to find the match for the current FAW sequence as described in the faw_valid variable.

Values:
See first_pmal.
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

[4] Change all instances of '... PMA lane number ...' to '... PMA lane identifier ...'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.4.2.1 P 61 L 28 # 143

Nicholl, Gary
Cisco Systems

Comment Type TR Comment Status A rewrite bucket

Definition of variable "pma_lane". The definition states that there can be 4 PMA lane numbers on the PMA service interface. But if I look at Figure 155-10 there are 8 lanes on the PMA service interface. There are however 4 lanes on the PMD service interface. I suspect the editor meant "PMD service interface (i.e. the interface below the PMA sublayer) and not the PMA service interface (the interface above the PMA sublayer).

Also the reference to Table 155-3 is not an active cross reference.

SuggestedRemedy

Change "PMA service interface" to "PMD service interface".

Fix the cross-reference to Table 155-3.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Cl 155 SC 155.4.2.1 P 68 L 26 # 409

Slavick, Jeff
Broadcom

Comment Type TR Comment Status A rewrite bucket

There are nine instances of 'super-frame' and two instances of 'DSP super-frame'. Suggest that one term is used consistently.

SuggestedRemedy

Suggest that the two instances of '... DSP super-frame ...' (page 61, line 33 and page 63 and line 4) be changed to read '... super-frame ...'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David
Hewlett Packard Enterprise

Comment Type E Comment Status A rewrite bucket

A bad CW can be detected either by detecting errors after FEC decoding or by CRC errors. This should be clarified in the counter definition.

SuggestedRemedy

Add the following to the definition of cw_bad: An uncorrected codeword is detected if either errors remain after FEC correction or if the CRC32 check fails.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
The description of the 'FAW_COMPARE' function in subclause 155.4.2.2 'Functions' says that 'If current_pmal and first_pmal both found a match and ... faw_match is set to true.'.
Since faw_valid '... is considered to be valid if at least 36 bits match the 44 known bits of the FAW pattern ...' I assume rather than a 'match', this really should say something along the lines of 'if at least 36 symbols of the current receive 22-symbol block match the 44 known bits of the FAW pattern'.

It however seems simpler to just add faw_valid is TRUE as a condition to enter the COMP state, which would become 'faw_counter_done * faw_valid', and have a path from the 'COUNT_2' state to the 'INVALID_FAW' state if 'faw_counter_done * faw_valid' is FALSE.
This would also mirror the similar use of the 'FAW_COMPARE' function in the 'COMP_2ND' state where the condition to transition to the state is 'faw_counter_done * faw_valid' and 'faw_counter_done * !faw_valid' results in a transition to the 'FAW_SLIP' state.

SuggestedRemedy

1. Change the text 'if current_pmal and first_pmal both found a match and indicate the same PMA lane number, faw_match is set to true' in the description of the 'FAW_COMPARE' function to read 'if current_pmal and first_pmal indicate the same PMA lane number, faw_match is set to true'.

2. Change the condition on the transition from the 'COUNT_2' state to the 'COMP' state in Figure 155-14 'Frame alignment word (FAW) lock state diagram' to read 'faw_counter_done * faw_valid'.

3. Add a transition from the 'COUNT_2' state to the 'INVALID_FAW' state in Figure 155-14 'Frame alignment word (FAW) lock state diagram' that reads 'faw_counter_done * !faw_valid'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Subclause 155.4.2.3 'Counters' defines the 'cw_bad_count' counter, however this counter is not reference anywhere else in the draft.

SuggestedRemedy

Delete the 'cw_bad_count' counter definition.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

The description of the 'restart_lock' variable says 'A boolean variable that is set by the frame alignment word (FAW) lock process to reset the synchronization process on all PMA lanes. It is set to TRUE when 15 FAWs in a row fail to match (15_BAD state).'. While the restart_lock variable is used in the frame alignment word (FAW) lock process described in Figure 155-14, it is also used in the Alignment marker lock process described in Figure 155-16.

SuggestedRemedy

1. Rename all instances of the 'restart_lock' variable used in Figure 155-14 'Frame alignment word (FAW) lock state diagram' to be 'pma_restart_lock'.

2. Rename all instances of the 'restart_lock' variable used in Figure 155-16 'Alignment marker lock state diagram' to be 'pcs_restart_lock'.

3. Rename 'restart_lock' variable in subclause 155.4.2.1 'Variables' to be 'pma_restart_lock'.

4. Add a definition of the 'pcs_restart_lock' variable to subclause 155.4.2.1 'Variables'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
Bruckman, Leon Huawei

Comment Type T **Comment Status** A **rewrite bucket**

Text on FAW synchronization seems to imply that there is a FAW synchronization process for each lane, for a total of 4 independent FAW synchronization processes. Actually there are 2 FAW synchronization processes, one per polarization (see figure 115.10 and clause 155.3.3.7)

Suggested Remedy
Replace: "The synchronization process operates independently on each lane" with: "The synchronization process operates independently on each polarization"

Response ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David Hewlett Packard Enterprise

Comment Type E **Comment Status** A **rewrite bucket**

As the PMA is 'above' the PMD, the PMA would detect alignment in the symbols for a given lane of the PMD service interface.

Suggested Remedy
Change the text ‘... the PMA service interface’ to read ‘... the PMD service interface’.

Response ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David Hewlett Packard Enterprise

Comment Type T **Comment Status** A **rewrite bucket**

Subclause 155.4.2.4 'State diagrams' says that 'The PCS shall implement the alignment marker lock process as shown in Figure 155-16 to identify the AM sequence at the start of each 400GBASE-ZR frame by observing data from the SC-FEC decoder output.', however Figure 155-2 (page 35, line 20) shows the 'AM/OH detect & removal' block after the 'CRC32 checking block and subclause 155.2.5.7 'AM and OH detect and removal' says ‘... after removal of CRC32, MBAS, and pad, ...’.

Suggested Remedy
Suggest that the text ‘... by observing data from the SC-FEC decoder output.’ be changed to read ‘... by observing data from the CRC32 check and error marking output.’

Response ACCEPT IN PRINCIPLE.

See response to comment #346.

Ran, Adee Cisco

Comment Type E **Comment Status** A **rewrite bucket**

The state diagram has several blocks in which text of assignment statements wraps to the next line. There is enough room to prevent that.

Suggested Remedy
Resize blocks (changing layout if required) to prevent wrapping lines.

Response ACCEPT IN PRINCIPLE.

See response to comment #346.
Based on the description of the 'faw_valid' variable, and slide 4 of the contribution 'faw_valid analysis' from Mike Sluyski referencing a 'QPSK FAW' value of 44, it seems a valid FAW sequence can only be detected across all four lanes. As a result, it will only be possible to achieve FAW lock on all lanes, or no lanes. There is no case where some lanes can be FAW locked, and others are not. Therefore, seems no need to have four instances of the Frame alignment word lock state diagram (page 63, line 3). If there were, they wouldn't operate independently on each lane (page 63, line 5), and instead would operate in lock step.

It therefore seems that the four Frame alignment word lock state diagram can be collapsed in to one if the first_pmal and current_pmal variables hold the mapping number found in table 155-7 to achieve faw_valid rather than the lane number. The PMA deskew state diagram can then be removed.

Suggested Remedy

[1] Delete the variables 'pma_alignment_valid', 'all_locked', and PMA_lane_mapping from subclause 155.4.2.1 'Variables' and Figure 155-14.

[2] Change the description of the 'faws_lock' variable (page 61, line 1) to read:

faws_lock
A Boolean variable that is set to true when the receiver has detected the location of the FAW.

[3] Change the description of the faw_valid as suggested in my comment about faw_valid.

[4] Change the description of the first_pmal to read (this overrides my other comment about first_pmal):

A variable that holds the PMA lane mapping number found in the first column of Table 155-7 corresponding to the PMD service interface lane mapping used to find the match for the first FAW sequence. It is compared to the PMA lane mapping number corresponding to the next FAW payload that is found.

[5] Change the description of the current_pmal to read (this overrides my other comment about current_pmal):

A variable that holds the PMA lane mapping number found in the first column of Table 155-7 corresponding to the PMD service interface lane mapping used to find the match for the current FAW sequence. It is compared to the variable first_pmal to confirm that the location of the FAW sequence has been detected.

[6] Change all instances of '... PMA lane number ...' to '... PMA lane mapping number ...'.

[7] Change the text '... of the next FAW on a PMA lane.' to read '... of the next FAW.' in the 'faw_counter' description.

[8] Change the first paragraph of subclause 155.4.2.4 'State diagrams' to read 'The PMA shall also implement the deskew process as shown in Figure 155-14.'

[9] Delete the second paragraph of subclause 155.4.2.4.

[10] Add the assignment 'pma_align_status <= FALSE' to the 'LOCK_INIT' state of Figure 155-14.

[11] Add the assignment 'pma_align_status <= TRUE' to the '2_GOOD' state of Figure 155-14.

[12] Delete Figure 155-15.

[13] Change the 'Value/Comment' filed of PICS item SM1 in subclause 155.7.4.4 'State diagrams' to read 'Meets the requirements of Figure 155-14'.

[14] Delete the SM2 row from subclause 155.7.4.4 and renumber following items.

Response

Response Status

ACCEPT IN PRINCIPLE.

See response to comment #346.

In the GET_BLOCK state, the variable slip_done should be faw_slip_done

Suggested Remedy

Change slip_done to faw_slip_done

Response

Response Status

ACCEPT IN PRINCIPLE.

See response to comment #346.
Comment Type: T, Comment Status: A, rewrite bucket

The 'slip_done' variable assigned to FALSE in the GET_BLOCK state of the Frame alignment word (FAW) lock state diagram is not defined. Suspect it should read 'faw_slip_done' so that it is set to FALSE before the FAW_SLIP function, which sets it TRUE, is called in the FAW_SLIP state.

Suggested Remedy
Change the text 'slip_done <= FALSE' in the GET_BLOCK state in Figure 155-14 to read 'faw_slip_done <= FALSE'.

Response, Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type: T, Comment Status: A, rewrite bucket

The description of the 'first_pmal' variable says it "... the PMA lane number that corresponds to the first FAW payload ..." however, it is updated by the assignment 'first_pmal <= current_pmal' every cycle through the '2_GOOD' and 'GOOD_FAW' states. With that said, the assignment 'first_pmal <= current_pmal' in the '2_GOOD' and 'GOOD_FAW' states appear to be redundant since the only way to enter these states is if 'faw_match' is TRUE and for 'faw_match' to be TRUE the first_pmal and current_pmal variables have to be equal (see FAW_COMPARE function, page 62, line 28).

Suggested Remedy
Consider removing the assignment 'first_pmal <= current_pmal' from the '2_GOOD' and 'GOOD_FAW' states.

Response, Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type: TR, Comment Status: A, rewrite bucket

There is no definition of the 'prev_pmal' variable used in the 'INVALID_FAW' state of figure 155-14 'Frame alignment word (FAW) lock state diagram', and there is no use or reference to the 'prev_pmal' variable elsewhere in the IEEE P802.3cw draft.

Suggested Remedy
Delete the assignment ' prev_pmal <= prev_pmal + 4) mod 252' from the 'INVALID_FAW' state.

Response, Response Status: W
ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment Type: T, Comment Status: A, rewrite bucket

Subclause 155.4.2.3 'Counters' defines the 'faws_bad_count' whereas the Figure 155-14 'Frame alignment word (FAW) lock state diagram' uses 'faw_bad_count' ('faw' vs 'faws').

Suggested Remedy
Suggest that:

[1] The transition from the 'INVALID_FAW' state to the '15_BAD' state be changed to read 'faws_bad_count = 15'.
[2] The transition from the 'INVALID_FAW' state to the 'COUNT_2' state be changed to read 'faws_bad_count < 15'.

Response, Response Status: C
ACCEPT IN PRINCIPLE.
See response to comment #346.
Comment Type: T Comment Status: A rewrite bucket

The 'restart_lock' variable is set to TRUE on entry to the '15_BAD' state. This will cause the state diagram to transition to the 'LOCK_INIT' state because 'restart_lock' is one of the OR conditions in the 'open arrow' entry to that state. The actions in the 'LOCK_INIT' state will be executed, but since 'restart_lock' remains set to TRUE, and 'open arrow' transitions are evaluated continuously whenever any state is evaluating its exit conditions (see 21.5.3), on exit the state diagram will loop back to the 'LOCK_INIT' state. The state diagram will then be locked in this loop permanently.

Suggested Remedy
Suggest that either the action 'restart_lock <= FALSE' be added to the 'LOCK_INIT' state or the 'restart_lock' be deleted and a 'UCT' be added from the '15_BAD' state to the 'LOCK_INIT' state.

Response
Response Status: C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Comment Type: E Comment Status: A rewrite bucket

Since the title of Figure 155-15 is 'PMA deskew state diagram' suggest that PMA should be added to the title of Figure 155-14 and PCS to the title of Figure 155-16.

Suggested Remedy
Suggest that:

[1] The title of Figure 155-14 should be changed to read 'PMA Frame alignment word (FAW) lock state diagram'.
[2] The title of Figure 155-16 should be changed to read 'PCS Alignment marker lock state diagram'.

Response
Response Status: C
ACCEPT IN PRINCIPLE.

See response to comment #346.
The figure 155-16 PCS alignment marker lock state diagram uses the variable 'pma_align_status', however that variable is generated by the figure 155-14 PMA frame alignment word (FAW) lock state diagram, and it is not passed across the PMA service interface from the PMA to the PCS. As a result, it is not available to be used in the figure 155-16 PCS alignment marker lock state diagram.

Suggest that 'pma_align_status' being 'TRUE' be used as a condition to set the SIGNAL_OK parameter of the PMA:IS_SIGNAL.indication primitive to OK and therefore communicate it across the PMA service interface. Since 'signal_ok', derived from the SIGNAL_OK parameter, is already used as an 'open arrow' entry to the 'LOCK_INIT' state of the figure 155-16 PCS alignment marker lock state diagram, 'pma_align_status' can be deleted as an exit condition from that state.

SuggestedRemedy

1. Add 'pma_align_status' being 'TRUE' as a condition to set the SIGNAL_OK parameter of the PMA:IS_SIGNAL.indication primitive to OK in subclause 155.3.2 '400GBASE-ZR PMA service interface'
2. Delete that exit condition 'pma_align_status' from the LOCK_INIT state in figure 155-16.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

<table>
<thead>
<tr>
<th>Cl</th>
<th>155</th>
<th>SC 155.4.2.4</th>
<th>P 66</th>
<th>L 18</th>
<th># 307</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law, David</td>
<td>Hewlett Packard Enterprise</td>
<td>Comment Type</td>
<td>T</td>
<td>Comment Status</td>
<td>A</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Cl</th>
<th>155</th>
<th>SC 155.5</th>
<th>P 67</th>
<th>L 3</th>
<th># 488</th>
</tr>
</thead>
<tbody>
<tr>
<td>Law, David</td>
<td>Hewlett Packard Enterprise</td>
<td>Comment Type</td>
<td>E</td>
<td>Comment Status</td>
<td>A</td>
</tr>
</tbody>
</table>

Typo, amps_... should be amp_,... based on counter definition, see page 62, line 37.

SuggestedRemedy

Change the action 'ampsBadCount <= 0' to read 'ampBadCount <= 0' in the 'GOOD_AM' state of the Figure 155-16 'Alignment marker lock state diagram'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.
Strictly speaking, protocol agnostic management 'objects' are defined in Clause 30, with protocol specific 'objects' defined in IEEE Std 802.3.1 and IEEE Std 802.3.2.

Suggested Remedy
Since the title of subclause 45.2 in IEEE Std 802.3-2022 is 'MDIO Interface registers', suggest that the text 'The following objects apply...' in subclause 155.5 ne changed to read 'The following registers apply...'.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

Comment

In 45

Suggested Remedy

in Clause 45 and why green when line 4 has black?

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.
Comment 490

Comment Type: TR

Comment Status: A

Comment:
FEC degraded SER activate threshold register should be PCS FEC degraded SER activate threshold register, but it's for Clause 119 PCS RS(544,514) FEC and there is no FEC degraded SER feature in this draft.

Suggested Remedy:
Delete the four FEC degraded SER rows

Response:
ACCEPT IN PRINCIPLE. See response to comment #346.

Comment 145

Comment Type: TR

Comment Status: A

Comment:
Table 155-9 provides FEC corrected and uncorrected codeword counts for the SC-FEC. Should there be similar monitoring for the SD-FEC? This is missing in the current draft.

Suggested Remedy:
Define FEC monitoring for the SD-FEC.

Response:
ACCEPT IN PRINCIPLE. See response to comment #346.
The MDIO references for corrected and uncorrected codeword counters only point to the Clause 45 register, which then points you back to Clause 153 for the definition of the counter. In Clause 153 it refers to “fec_align_status” which does not exist in Clause 155.

Suggested Remedy
Add sub-clauses for corrected and uncorrected codeword counters:

155.5.1.x FEC_corrected_cw_counter
A corrected FEC codeword is a codeword that contained errors and was corrected.
The FEC_corrected_cw_counter is a 32-bit counter that counts once for each corrected FEC codeword processed when pma_alignment_valid is TRUE. This variable is mapped to the registers defined in 45.2.1.227 (1.2276, 1.2277).

155.5.1.y FEC_uncorrected_cw_counter
An uncorrected FEC codeword is a codeword that contains errors that were not corrected, including FEC codewords that may have been mis-corrected or not completely corrected.
The FEC_uncorrected_cw_counter is a 32-bit counter that counts once for each uncorrected FEC codeword processed when pma_alignment_valid is TRUE. This variable is mapped to the registers defined in 45.2.1.228 (1.2278, 1.2279).

Bring in 45.2.1.227 and 45.2.1.228 and references to the newly added sub-clauses in Clause 155.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

The corrected bit and total bit MDIO registers refer to Clause 153 only but are being used in Clause 155 now.

Suggested Remedy
Add the following sub-clauses:
155.5.1.x FEC_total_bits_counter
See 153.2.5.3 for the definition of this counter.

155.5.1.y FEC_corrected_bits_counter
See 153.2.5.4 for the definition of this counter.

Bring in 45.2.1.229 and 45.2.1.230 and add appropriate references to these new sub-clauses.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

See response to comment #346.

Widen the right column width until they fit

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.
Table 155-9 mentions the MDIO status variable "FEC degraded SER", but as pointed out in an earlier comment the draft provides no description as to how the "FEC degraded SER" status variable is set.

Suggested Remedy

The description for "FEC degraded SER" is missing from the draft.

Define a FEC degrade monitoring scheme for 400GBASE-ZR (similar to what was done in section 119.2.5.3 for 400GBASE-R).

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Register bits 3.52.3:0 (IEEE Std 802.3-2022 subclause 45.2.3.25) are PCS lane alignment lock status registers, yet they are mapped to PMA lane alignment lock variables (faw_lock<3:0>). Similarly, register bit 3.50.12 is the PCS alignment status, yet it is mapped to the PMA alignment status variable (pma_align_status).

If there was a 400GBASE-ZR framing issue on a link where the PMA framing was operating correctly, the faws_lock<3:0> bits and the pma_align_status would all be true based on the respective frame alignment word (FAW) lock state diagrams, while the PCS would not be aligned based on the alignment marker lock state diagram. In that case, the current register mapping would indicate that all the PCS lanes were aligned, and the overall PCS was aligned, when in fact this is not the case. This would seem to be misleading information to provide in the management registers in such a case.

Further, register 3.400 (IEEE Std 802.3-2022 subclause 45.2.3.49) through 3.419 are the 'PCS lane mapping registers, lanes 0 through 19' and these registers report the PCS lane number provide by the alignment marker for the respective PMA service interface lane.

Table 155-9, however, maps these PCS lane mapping registers to the PAM lane mapping variable 'pma_lane_mapping<6>' output by Figure 155-14, the 'Frame alignment word (FAW) lock state diagram'.

Subclause 155.2.4.3 'GMP mapper' says 'The first 1920 bits of the frame contain alignment markers (AM), and that 'These are identical to the 16 x 120b markers defined for 400GBASE-R in 119.2.4.4.2.'.' Since the 16 different 400GBASE-R PCS lane alignment markers are all placed in a single 400GBASE-ZR alignment marker (see 155.2.4.4.1) it seems that 400GBASE-ZR frames are not mapped to 16 PCS lanes. This seems to be confirmed in subclause 155.2.4.3 'GMP mapper' which says '...400GBASE-ZR frames are not mapped to 16 PCS lanes ...'. As a result, there are no PCS lanes across the PMA service interface, therefore there is no PCS lane alignment lock status nor PCS Lane mapping.

Finally, register bits 3.52.3:0, 3.50.12, and 3.400 through 3.403, which are all PCS register bits defined for MMD 3 (see IEEE Std 802.3-2022 Table 45-1), are mapped to variables found in the PMA. As illustrated in Figure 120A-9 (page 103), MMD 3 does not have access to the PMA (or PMD) as they are in MMD 1.

Based on the above, suggest that two new subclauses are added to say that registers 3.52, 3.53 and 3.400 through 3.403 are not used by the 400GBASE-ZR PCS because the 400GBASE-ZR PCS does not use PCS lanes across the PMA service interface. Require all PCS lane alignment bits to be set to zero. The content of the PCS lane mapping registers does not need to be defined because their content is only valid when the respective PCS lane alignment bit is set to one. In addition, suggest that the PCS lane alignment status bit be mapped from the 'amps_lock' variable generated by the Figure 155-16, the PCS alignment marker lock state diagram.

Suggested Remedy

Register bits 3.52.3:0 (IEEE Std 802.3-2022 subclause 45.2.3.25) are PCS lane alignment lock status registers, yet they are mapped to PMA lane alignment lock variables (faw_lock<3:0>). Similarly, register bit 3.50.12 is the PCS alignment status, yet it is mapped to the PMA alignment status variable (pma_align_status).

If there was a 400GBASE-ZR framing issue on a link where the PMA framing was operating correctly, the faws_lock<3:0> bits and the pma_align_status would all be true based on the respective frame alignment word (FAW) lock state diagrams, while the PCS would not be aligned based on the alignment marker lock state diagram. In that case, the current register mapping would indicate that all the PCS lanes were aligned, and the overall PCS was aligned, when in fact this is not the case. This would seem to be misleading information to provide in the management registers in such a case.

Further, register 3.400 (IEEE Std 802.3-2022 subclause 45.2.3.49) through 3.419 are the 'PCS lane mapping registers, lanes 0 through 19' and these registers report the PCS lane number provide by the alignment marker for the respective PMA service interface lane.

Table 155-9, however, maps these PCS lane mapping registers to the PAM lane mapping variable 'pma_lane_mapping<6>' output by Figure 155-14, the 'Frame alignment word (FAW) lock state diagram'.

Subclause 155.2.4.3 'GMP mapper' says 'The first 1920 bits of the frame contain alignment markers (AM), and that 'These are identical to the 16 x 120b markers defined for 400GBASE-R in 119.2.4.4.2.'.' Since the 16 different 400GBASE-R PCS lane alignment markers are all placed in a single 400GBASE-ZR alignment marker (see 155.2.4.4.1) it seems that 400GBASE-ZR frames are not mapped to 16 PCS lanes. This seems to be confirmed in subclause 155.2.4.3 'GMP mapper' which says '...400GBASE-ZR frames are not mapped to 16 PCS lanes ...'. As a result, there are no PCS lanes across the PMA service interface, therefore there is no PCS lane alignment lock status nor PCS Lane mapping.

Finally, register bits 3.52.3:0, 3.50.12, and 3.400 through 3.403, which are all PCS register bits defined for MMD 3 (see IEEE Std 802.3-2022 Table 45-1), are mapped to variables found in the PMA. As illustrated in Figure 120A-9 (page 103), MMD 3 does not have access to the PMA (or PMD) as they are in MMD 1.

Based on the above, suggest that two new subclauses are added to say that registers 3.52, 3.53 and 3.400 through 3.403 are not used by the 400GBASE-ZR PCS because the 400GBASE-ZR PCS does not use PCS lanes across the PMA service interface. Require all PCS lane alignment bits to be set to zero. The content of the PCS lane mapping registers does not need to be defined because their content is only valid when the respective PCS lane alignment bit is set to one. In addition, suggest that the PCS lane alignment status bit be mapped from the 'amps_lock' variable generated by the Figure 155-16, the PCS alignment marker lock state diagram.
Suggested changes:

[1] Delete the antepenultimate row of Table 155-9.

[2] Add a new subclause 155.5.1 as follows:

155.5.1 PCS lane alignment registers

The PCS lane alignment registers (registers 3.52 and 3.53) are not used as the 400GBASE-ZR PCS does not use PCS lanes across the PMA service interface (see 155.2.4.3). A 400GBASE-ZR PCS shall return a zero for all bits in these registers.

[3] Change the variable 'pma_align_status' in the 'ZR-PCS/PMA variable' column of the penultimate row of Table 155-9 to 'amps_lock'.

[5] Add a new subclause 155.5.2 as follows:

155.5.2 PCS lane mapping registers

The PCS lane mapping registers (registers 3.400 through 3.419) are not used as the 400GBASE-ZR PCS does not use PCS lanes across the PMA service interface.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

Zimmerman, George
CME Consulting/APL Group, Cisco, CommScope, Ma

Comment Type TR
Comment Status A rewrite bucket

This is a general comment on the requirements. I am attaching it to these PICS because this is where it became apparent. The style of IEEE SA standards (and IEEE Std 802.3) is that requirements use the term "shall". Each PICS item should have an associated "shall" and each "shall" should have a PICS. However, 155.7.4.1 is a list of the subclauses for the most part. Further, looking at the subclauses, they are largely without "shall"s. Most of the items in clause 155 are descriptive of an implementation, and do not use the term shall. They use "is" or other descriptive language. The PICS are a list of the functional blocks described, but most of those functional blocks are lacking actual requirements. Instead they often describe an implementation or, worse yet, sometimes try to require a particular implementation ("an implementation shall"). What needs to happen is that the clause needs to be rewritten carefully considering what requirements are needed for interoperability, and deleting the unnecessary implementation description. This is a big job, and, in my opinion, means the draft is not technically complete, and should not have begun initial working group ballot. I truly regret having to make a comment like this, but I believe this is a great example of why we have working group ballots in 802.

SuggestedRemedy

Unfortunately, the draft is so far from complete that I cannot propose a specific remedy for the systematic problem. I can suggest that the TF look at each subblock, determine what the observed behavior is, determine which parts matter to interoperability, and write "shall" statements in the subclauses. Then those shall statements can be made as PICS. Additionally, this will highlight where there is implementation description that can be deleted. When this is done, restart working group ballot.

Response

ACCEPT IN PRINCIPLE.

With editorial license, restructure and clarify Clause 155 and 156 as appropriate: to identify interoperability requirements using "SHALL" statements, as needed. to address issues noted in https://www.ieee802.org/3/cw/public/22_10/dambrosia_3cw_01b_221018.pdf
IEEE P802.3cw D2.0 400 Gb/s over DWDM systems Initial Working Group ballot comments

Law, David
Hewlett Packard Enterprise

Comment Type: E
Comment Status: A
Rewritten bucket

Suggest that ‘... PMA entity that resides just above the PMD, and the PMD entity.’ should read ‘... PMA sublayer that resides just above the PMD, and the PMD sublayer.’.

Suggested Remedy
See comment.

Response
Response Status: C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Law, David
Hewlett Packard Enterprise

Comment Type: T
Comment Status: A
Rewritten bucket

As described here the PMA sends digital symbols (discrete and sampled) from a set of 4 levels), not “analog streams” (which is an undefined term).

Also applies to 156.5.2 which contains very similar text.

Suggested Remedy
Change "In the transmit direction, the PMA continuously sends four analog streams to the PMD" to "In the transmit direction, the PMA continuously sends four streams of quaternary symbols to the PMD".

Change "The PMD then converts these four analog streams" to "The PMD then converts these streams of symbols".

Apply in 156.5.2, if it is retained.

Response
Response Status: C
ACCEPT IN PRINCIPLE.

See response to comment #346.

Ran, Adee
Cisco

Comment Type: T
Comment Status: A
Rewritten bucket

The service interface of this PMD is not consistent with 116.3 because as it’s written, the inputs and outputs are analog signals, not streams of discrete symbols.

Suggested Remedy
Rewrite the text without referring to 116.3 (or make it “similar to 116.3 but…”)

Response
Response Status: C
ACCEPT IN PRINCIPLE.

See response to comment #346.
Subclause 155.3.3 Functions within the PMA' says that 'The purpose of the PMA is to adapt between the PCS layer digital symbols to and from the four analog signals ...' and subclause 155.3.3.4 '16QAM encode and signal drivers' says that '... stream of symbols is converted to four analog signals ...' and that 'The analog signals are sent to the 400GBASE-ZR PMD sublayer over the PMD:IS_UNITDATA_0.request to PMD:IS_UNITDATA_3.request sublayer signals.' It, therefore, appears that the PMD service interface is a set of analogue signals. Finally, Figure 155-10 shows a DEC block above the PMD service interface.

Subclause 156.2 'Physical Medium Dependent (PMD) service interface', however, says 'In the transmit direction, the PMA continuously sends four analog streams to the PMD ... with binary values of 3, 1, -1, and -3 using the PMD:IS_UNITDATA_i.request primitive.' Is it correct to say "... with binary values ...".

SuggestedRemedy
[1] Suggest that in subclause 156.2 (page 75, line 14) the text '... X and Y polarizations with binary values of 3, 1, -1, and -3 using the PMD:IS_UNITDATA_i.request primitive.' should be changed to read '... X and Y polarizations with the values of 3, 1, -1, and -3 using the ...'.

[2] Suggest that in subclause 156.5.2 (page 77, line 39) the text '... X and Y polarizations with binary values of 3, 1, -1, and -3.' should be changed to read '... X and Y polarizations with the values of 3, 1, -1, and -3.'.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

As described here the PMD sends analog signals (continuous, to be sampled and digitized in the PMA).

"Analog streams" is an undefined term and is not used in other clauses (previous instances of this term have been removed by 802.3dc and earlier revision projects).

Also applies to 156.5.3 which contains very similar text.

SuggestedRemedy
Change "the PMD continuously sends four analog streams to the PMA, corresponding to the signals received from the MDI" to "the PMD continuously sends four analog signals to the PMA, corresponding to the optical signal received from the MDI".

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.

I suspect that skew variation cannot exist at SP2 (PMD service interface), because the PCS and PMA are defined as operating in one clock domain, not as multiple lanes with separate logic. This may be worth mentioning (as done in other cases where skew variation can't exist, e.g. 140.3.2).

Is skew variation (as opposed to static skew) relevant on a single-lane, but coherent, PMD output?

If there is no skew variation between SP2 and SP3 then skew variation need not be specified at all.

SuggestedRemedy
Add a statement that that there is no skew variation at TP2.

If skew variation between the PMDs isn't relevant, change also the text about skew variation at SP3 and SP4, as in 140.3.2.

Response
ACCEPT IN PRINCIPLE.
See response to comment #346.
It is unclear if the skew constraints need to be revisited in light that the part is not part of 400GBASE-R family, but current pointer is to 80-8, which is for 100G

Suggested Remedy
Revisit skew constraints as needed.

The diagram reference should be 116-4.

ACCEPT IN PRINCIPLE.

See response to comment #346.

Figure 80-8 applies to 100GBASE-R PHYs. The diagram for skew points for 400GBASE-R PHYs is in Figure 116-5.

Also, there SP0 and SP7 are not defined for 400GBASE-R PHYs.

Suggested Remedy
Change "at the points SP0 to SP7 shown in Figure 80-8" to "at the points SP1 to SP6 shown in Figure 116-5".

ACCEPT IN PRINCIPLE.

See response to comment #346.

Are these Skew and SV limits plausible? What does the PMA need? This is a hybrid of "parallel" and "serial", needs new numbers.

Suggested Remedy
Revise to limits that are appropriate to DP-16PAM technology and the channel.

ACCEPT IN PRINCIPLE.

See response to comment #346.
Rather than being requested by the PMD service interface messages, messages are passed across the PMD service interface, either from the PMA to the PMD or from the PMD to the PMA. In addition, abstract service interfaces pass data in the parameters of primitives. In the case of the inter-sublayer service interface primitives defined in subclause 116.3 referenced by IEEE P802.3cw, these parameters are tx_symbol (see 116.3.3.1.1) and rx_symbol (see 116.3.3.2.1).

Suggested Remedy

Suggest:

1. The text 'The PMD Transmit function shall convert the four analog streams requested by the PMD service interface messages PMD:IS_UNITDATA_0.request to PMD:IS_UNITDATA_3.request into ...' (page 77, line 35) should be changed to read 'The PMD Transmit function shall convert the four analog streams from the PMA passed across the PMD service interface in the tx_symbol parameters of the PMD:IS_UNITDATA_0.request to PMD:IS_UNITDATA_3.request primitives into ...'.

2. The text 'The PMD Receive function shall convert the composite optical signal received from the MDI into four analog streams for delivery to the PMD service interface using the messages PMD:IS_UNITDATA_0.indication to PMD:IS_UNITDATA_3.indication, all according ...' (page 77, line 45) should be changed to read 'The PMD Receive function shall convert the composite optical signal received from the MDI into four analog streams passed across the PMD service interface to the PMA in the rx_symbol parameters of the PMD:IS_UNITDATA_0.indication to PMD:IS_UNITDATA_3.indication primitives, all according ...'.

3. The text 'The analog signals are sent to the 400GBASE-ZR PMD sublayer over the PMD:IS_UNITDATA_0.request to PMD:IS_UNITDATA_3.request sublayer signals.' in subclause 155.3.3.4 (page 58, line 33) is changed to read 'The four analog signals are passed across the PMD service interface to the PMD in the tx_symbol parameters of the PMD:IS_UNITDATA_0.request to PMD:IS_UNITDATA_3.request primitives.:'.

4. The text 'Four coherent signals IX, QX, IY, and QY are supplied by the receive function of the 400GBASE-ZR PMD and input to the 400GBASE-ZR PMA over the PMD:IS_UNITDATA_0.indication to PMD:IS_UNITDATA_3.indication.' in subclause 155.3.3.5 (page 58, line 47) is changed to read 'Four coherent signals IX, QX, IY, and QY received by the PMD are passed across the PMD service interface to the PMA in the rx_symbol parameters of the PMD:IS_UNITDATA_0.indication to PMD:IS_UNITDATA_3.indication primitives.'.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

82.2.11 defines a 100GBASE-R test pattern, which is irrelevant. The 400GBASE-ZR PCS has a test pattern mode specified in 155.2.1.

Suggested Remedy

Change "82.2.11, Clause 155" to "155.2.1".

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.

It is unclear why some parameters have pattern "valid 400GBASE-R signal, 5" while other have only 5 (which is the only test pattern defined in this clause, and sufficient for measurement of all parameters).

"valid 400GBASE-R signal" is inadequate here - 400GBASE-R usually refers to the data created by a clause 119 PCS; but ZR is a special case - any 400GBASE-R data has to be processed by the full ZR stack.

Suggested Remedy

Change pattern to either "5" in all rows, or "valid 400GBASE-ZR signal" in all rows.

Consider removing the pattern column and just stating in text that all parameters are specified with test pattern 5.

Response

ACCEPT IN PRINCIPLE.

See response to comment #346.