Mux/Demux specifications for Annex 156A

Eric Maniloff - Ciena

IEEE P802.3cw

September 29, 2022

1

Overview

An Informative Annex 156A is intended to provide information compliant DWDM Black Links

Comment #367 was submitted requesting that Annex 156A provide additional specifications for Mux and Deuxes that will meet the optical specifications in Table 156-8:

Channel Passband

Adjacent Channel Crosstalk

		Ciena	a			
0	т	Comment Status	D			
					tions for Mux and	
nec	dy					
						See
por	nse	Response Status	w			
ED	ACCEPT	IN PRINCIPLE.				
	neo neo le te w.ie	examples sh wices that wo medy le to 156.A.1 i w.ieee802.org ponse	e T Comment Status examples should be expanded to evices that would satisfy the black medy le to 156.A.1 including Mux and D w.ieee802.org/3/cw/public/22_052	e T Comment Status D examples should be expanded to include evices that would satisfy the black-link trans medy le to 156.A.1 including Mux and Demux ex w.ieee802.org/3/cw/public/22_0523/manike sponse Response Status W	e T Comment Status D examples should be expanded to include some specification wices that would satisfy the black-link transfer funtion medy le to 156.A.1 including Mux and Demux example specification w.ieee802.org/3/cw/public/22_0523/maniloff_3cw_01_220 sponse Response Status W	e T Comment Status D c examples should be expanded to include some specifications for Mux and evices that would satisfy the black-link transfer funtion medy le to 156.A.1 including Mux and Demux example specifications. For example w.ieee802.org/3/cw/public/22_0523/maniloff_3cw_01_220523.pdf#page=5 sponse Response Status W

The methodology and spectral properties captured in 802.3cwD2.0 were presented in the following contributions:

https://www.ieee802.org/3/cw/public/adhoc/21_0212/maniloff_3cw_01_210212.pdf

https://www.ieee802.org/3/cw/public/adhoc/21_0312/maniloff_3cw_01a_210312.pdf

https://www.ieee802.org/3/cw/public/22_0523/maniloff_3cw_01_220523.pdf

Parameters

Parameter	Min	Max	Unit	Note
Mux 3dB BW	70	76	GHz	Full width at 3dB loss relative to central frequency
DeMux 3dB BW	70	76	GHz	Full width at 3dB loss relative to central frequency
Mux 10dB BW	85	94	GHz	Full width at 10 dB loss relative to central frequency
Demux 10dB BW	85	94	GHz	Full width at 10 dB loss relative to central frequency
Mux Insertion Loss Variation		1.5	dB	Maximum insertion loss variation between ports at TP2
Demux Insertion Loss Variation		1.5	dB	Maximum insertion loss variation between ports at TP3
Mux Adjacent Channel Isolation	30		dB	With respect to center frequency on adjacent channel
Demux Adjacent Channel Isolation	30		dB	With respect to center frequency on adjacent channel
Mux Frequency Shift	-4	4	GHz	Spectral offset from target frequency
Demux Frequency Shift	-4	4	GHz	Spectral offset from target frequency

The table summarizes parameters that will meet the DWDM black link spectral transfer function

Mux Demux Filter Shapes

A 3rd order super-Gaussian filter shape was used to model the passband, adjacent channel crosstalk, and spectral isolation

Although no filter will perfectly match the theoretical filter profile, this is useful for modeling worst case spectral properties

The form of the filters is:

$$T(f) = \exp[-\ln(2) \times (\frac{2(f - f_0)}{B})^6]$$

T = the transmission

f = frequency

f₀= center frequency

B = Filter Bandwidth

Summary

The specifications on slide 4 and definitions from slide 5 are intended to be added to Annex156A

This will provide practical information on examples of filter characteristics that will meet the normative spectral properties in Table 156-8

Thanks!