# Addressing measurement requirements for EVM

| Klaus Engenhardt / Bernd Nebendahl/ Greg LeCheminant | 2021.04.29 |
|------------------------------------------------------|------------|
| Affiliated with Keysight Technologies                |            |



1.00.011

## **Agenda/intent**

- Motivation: Close the TBD status of Error Vector Magnitude in clause 156
- This presentation is in support of a comment against draft 1.0

| First name 5 |      |            | Surname | Affiliation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                   |
|--------------|------|------------|---------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Greg         |      |            |         | Le Cheminant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Keysight Technologies                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                   |
|              |      |            |         | Click on column headers for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | help                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                   |
| Category     | Page | Sub-clause | Line #  | Comment                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Proposed Change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Must Be Satisfied |
| Technical    | 76   | 156.9.9    | 31      | The definition of error-vector-magnitude (EVM) is<br>currently in TBD status. EVM requires a<br>definition as well as a specification limit. Small<br>changes in EVM can be seen as large changes<br>in OSNR (see<br>http://grouper.ieee.org/groups/802/3/cn/public/ad<br>hoc/18_1025/anslow_3cn_01_181025.pdf). A<br>specification limit requires a known method of<br>measurement. The complexity of the EVM<br>measurement requires a specific analysis<br>process to achieve consistent results. This<br>process should be explcitly defined. See<br>https://grouper.ieee.org/groups/802/3/cn/public/a<br>dhoc/19_0207/lecheminant_3cn_01_190207.pdf<br>and<br>https://grouper.ieee.org/groups/802/3/cn/public/a<br>dhoc/19_0509/lecheminant_3ct_01_190509.pdf | A method for computing EVM has been<br>developed by Keysight Technologies and used<br>in ITU and OIF standards. This is contained<br>within a large Matlab script. The computation<br>details need to be followed exactly to achieve<br>consistent results. This script is available for<br>use within the IEEE 802.3 standard. It is likely<br>too large to be directly written into the standard<br>document, so If used, guidance from the group<br>is requested on the details for script<br>management and inclusiion within the 802.3cw<br>clauses. A presentation on the Keysight EVM<br>script is planned to support this comment |                   |



### **Current EVM status**

#### Table 156–6–400GBASE-ZR transmit characteristics

| Description                                                       | Value                                                                                                                | Unit         |
|-------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------|--------------|
| Signaling rate (range)                                            | 59.84375 +/- 20ppm                                                                                                   | GBd          |
| Modulation format                                                 | DP-16QAM                                                                                                             | _            |
| Minimum channel spacing                                           | 75                                                                                                                   | GHz          |
| Average channel output power (max)                                | -6                                                                                                                   | dBm          |
| Average channel output power (min)                                | -10                                                                                                                  | dBm          |
| Nominal center frequency                                          | The frequency in<br>Table 156–4 where the<br>channel index number<br>equals the variable<br>Tx_optical_channel_index | THz          |
| Spectral excursion (max)                                          | TBD                                                                                                                  | GHz          |
| Side-mode suppression ratio (SMSR) (min)                          | TBD                                                                                                                  | dB           |
| Laser linewidth (max)                                             | 500                                                                                                                  | kHz          |
| Offset between the carrier and the nominal center frequency (max) | 1.8                                                                                                                  | GHz          |
| Power difference between X and Y polarizations (max)              | 1.5                                                                                                                  | dB           |
| Skew between X and Y polarizations (max)                          | 5                                                                                                                    | ps           |
| Error vector magnitude (max)                                      | TBD                                                                                                                  | %            |
| I-Q offset (max)                                                  | TBD                                                                                                                  | <b>UD</b>    |
| Transmitter In-band OSNR (min)                                    | 34                                                                                                                   | dB(12.5 GHz) |
| Average launch power of OFF transmitter (max)                     | -20                                                                                                                  | dBm          |
| Transmitter reflectance <sup>a</sup> (max)                        | -20                                                                                                                  | dB           |

oe winnin me minto given in more 150-0.

#### 156.9.8 Skew between X and Y polarizations

The skew between the X and Y polarizations, as defined in Recommendation ITU-T G.698.2, shall be within the limits given in Table 156–6.

#### 156.9.9 Error vector magnitude

The error vector magnitude, as defined in TBD, shall be within the limits given in Table 156-

#### 156.9.10 I-Q offset

The I-Q offset, as defined in TBD, shall be within the limits given in Table 156–6.

#### 156.9.11 Optical signal-to-noise ratio (OSNR)

The optical signal-to-noise ratio (OSNR) at TP3 shall be within the limits given in Table 156–8. The OSNR is defined as the ratio of the average signal power in the wanted channel to the highest noise power density (referred to 12.5 GHz) in the range of the central frequency plus and minus the maximum spectral excursion. For the purposes of this definition, the noise is defined to be that which would be present if the signal in the

<sup>a</sup>Transmitter reflectance is defined looking into the transmitter.

## What is Error Vector Magnitude and how should it be measured?

- See https://grouper.ieee.org/groups/802/3/cn/public/adhoc/19\_0207/lecheminant\_3cn\_01\_190207.pdf
- See <u>https://grouper.ieee.org/groups/802/3/cn/public/adhoc/19\_0509/lecheminant\_3ct\_01\_190509.pdf</u>

No significant technical changes in two years since the above contributions were made



## **Quality metrics for phase modulated data signals**



The **Error Vector** connects the measured vector and the reference vector! An **Error Vector = 0** means we have an **ideal signal**!



## Multiple EVM values provide an overall quality metric for complexly modulated data signals



 $EVM(n) = \sqrt{I_{err}(n)^{2} + Q_{err}(n)^{2}}$ where n = symbol index  $I_{err} = I_{meas} - I_{ref}$   $Q_{err} = Q_{meas} - Q_{ref}$   $EVM_{rms} = \frac{\sqrt{\frac{1}{N}\sum_{n=1}^{N}EVM(n)^{2}}}{|peak \ ref. \ vector|}$ 

where N is the number of EVM points



## The above process requires well-defined signal processing methods for consistent computation of EVM

- Common mathematics have been used in both ITU and OIF to achieve the previously described processes for computing EVM
  - Used in ITU-T G.698.2 (Q6/SG15)
  - Used in OIF 400ZR



### Proposal

- Update 156.9.9 to include a reference to the OIF 400ZR document
  - https://www.oiforum.com/wp-content/uploads/OIF-400ZR-01.0\_reduced2.pdf (Appendix C 20.1 through) 20.4.
  - OIF also has a Password protected Matlab script that executes the EVM mathematics.
- ITU: Currently an EVM script (along with example data and corresponding results) is used but accessible only for members
- What makes sense for 802.3cw?

