Solutions

A Leading Provider of Smart, Connected and Secure Embedded Control Solutions

Richard Tse IEEE 802.3cx Teleconference July 22, 2020

Main Identified Issues

Inconsistent Message Timestamp Point

- Start of SFD vs start of symbol after SFD
- Path Delay Variance from Idle Insert/Delete for Alignment Markers

Multi-PCS lane distribution

- Multi-lane delay architecture needs to be more tightly defined
- Variable delays for xMII-to-multi-lane distribution and multi-lane-to-xMII recombination need to be accounted for

Summary: Message Timestamp Point Soln

Proposed Solution	Pros	Cons	Comments
Use start of symbol after SFD for	Consistent with parent applications,	Errors are introduced for some legacy	Possible workarounds for incompatible legacy implementations:
themessage timestamp point	and IEEE 1588v2	that use start of SFD as the message	Applications without AM and FEC can be resolved by adding a 1-byte time offset to each timestamp.
		timestamp point	AM functions can cause large but infrequent errors. These infrequent errors could be filtered away by time recovery algorithms, which have a low-pass filter.
			FEC can cause frequent large timestamp errors (equal to one FEC block). Time recovery algorithms could detect and adapt for errors equal to the time of one FEC block.

- We need to pick one message timestamp point or the other. The errors are the same for both.
- We should pick the one that is compatible with the parent applications for 802.3 timestamping IEEE 802.1AS and IEEE 1588v2. These both use the start of the symbol after the SFD as their message timestamp point.

Summary: Idle insert/delete for AMs Soln

Proposed Solution	Pros	Cons	Comments
PHY data delay is adjusted to account for AM insertion/removal and its corresponding Idle rate adaption	Literally consistent with IEEE 1588 timestamping Compatible with many existing implementations		 There seems to be general agreement on this solution. http://www.ieee802.org/3/maint/public/gorshe 1_0119.pdf http://www.ieee802.org/3/ad_hoc/ngrates/public/calls/1_9_0416/nicholl_nea_01_190416.pdf http://www.ieee802.org/3/ITSA/public/jan20/parkholm_itsa_01_0120.pdf http://www.ieee802.org/3/ITSA/public/jan20/tse_itsa_0_2_0120.pdf http://www.ieee802.org/3/ad_hoc/ngrates/public/calls/1_9_0416/nicholl_nea_01_190416.pdf http://www.ieee802.org/3/ad_hoc/ngrates/public/calls/1_9_0416/nicholl_nea_01_190416.pdf http://www.ieee802.org/3/cx/public/april20/bordogna_3_cx_01_0420.pdf

- No opposing contributions have been received for this issue
- Several contributions for normative text have been received. We need to pick the best parts from all of these contributions.

Summary: Multi-PCS Lane Distribution Soln #1

#	Proposed Solution	Pros	Cons	Comments
1	"Method 1" and "Option A" from http://www.ieee802.org/3/cx/publ ic/april20/tse_3cx_02a_0420.pdf	Literally congruent with IEEE 1588 timestamping rules	Rx lane multiplexing time must be accounted for on each	This solution's methodology cannot apply to other variable delay PHY functions. It is specific to this multi-lane PCS function.
	Define Tx lane distribution so PHY delay is constant and each lane transmits its block at a different time	Tx lane distribution delay is constant	message Some deskew FIFO capacity is used to	Because each PHY measures its delay, should be compatible with split PHYs.
	Rx lane deskew function naturally compensates for intrinsic Tx skew		intrinsic Tx lane distribution delay	
	Rx lane multiplexing time is variable. Each Rx lane has a unique delay.			

Summary: Multi-PCS Lane Distribution Soln #2

#	Proposed Solution	Pros	Cons	Comments
2	 "Method 1" and "Option B" from http://www.ieee802.org/3/cx/ public/april20/tse 3cx 02a 04 20.pdf Define Tx lane distribution so all lanes transmit their blocks at the same time. Each Tx lane has a unique delay. Rx lane multiplexing time is variable. Each Rx lane has a unique delay. 	Literally congruent with IEEE 1588 timestamping rules	Tx lane distribution time must be accounted for on each message Rx lane multiplexing time must be accounted for on each message	This solution's methodology cannot apply to other variable delay PHY functions. It is specific to this multi-lane PCS function. Because each PHY measures its delay, should be compatible with split PHYs.

Summary: Multi-PCS Lane Distribution Soln #3

#	Proposed Solution	Pros	Cons	Comments
3	 "Method 2" and "Option C" from http://www.ieee802.org/3/cx /public/april20/tse 3cx 02a 0420.pdf Define Tx lane distribution so all lanes transmit their blocks at the same time Define Tx lane distribution time as a constant value, M Define Rx lane multiplexing time as a constant value, N M + N = intrinsic constant delay of both the Tx and Rx 	Conceptually congruent with IEEE 1588 timestamping rules Consistent with how FEC delays are dealt with in 802.3 Because the delays are treated as constants, 802.3 delay registers can be used to record their values (M and N)	Literally incongruent with IEEE 1588 timestamping rules	This generic solution works for all variable delay functions that have mirrored Tx and Rx delays that sum to a constant value. It simplifies the estimation of the delay for a single PHY function or for multiple cascaded PHY functions. Should be compatible with split PHYs as long as each Rx PHY produces an output that is identical to its corresponding Tx PHY's input.

multi-PCS lane operations

Summary: Multi-PCS Lane Distribution

• Soln #3

- Might enable the simplest implementation because it eliminates the need to track every message's datapath and corresponding delay through the Tx and/or Rx PHY
- Follows the methodology used by IEEE 802.3 for FEC and can be applied generically for one or many cascaded PHY functions that have variable intrinsic delays and should work for many (most?) new PHY functions that might be defined in the future

Conclusions

- Can we make decisions to move ahead for any of these 3 issues?
 - Decide what normative text is needed
 - Decide what informative text is needed
 - Possibly select from or modify existing contributions
- Can we define the generic methodology that should be used for all PHY functions that have varying Tx and Rx intrinsic delays that always sum to a constant value?
 - Note that implementation-specific delays (e.g. start-up delays, process delays) must be accounted for separately, but, for PHY functions with this type of delay, it must be a constant value so they should be "easy" to determine

Questions?

Thanks!

