Further Considerations on Multi-PCS Distribution Delay

Xiang He (Huawei) Jingfei Lv (Huawei) Silvana Rodrigues (Huawei)

802.3cx ad hoc – 11/17/2020

Clarification on Delay Reporting

- Questions were raised on how to report the delay introduced by PCS lane distribution for each PTP message.
- Dynamic delay (caused by PCS lane distribution) will not be reported through the registers.
- Fixed delay shall be reported through the registers that are already defined in Clause 45.
- Both dynamic delay and fixed delay are compensated in the PTP messages.
- Taking separated MAC and PHY as an example:

- Data delay could be separated as two parts:
 - Dynamic delay which can be estimated (by the MAC chip) and get compensated to minimize time error.
 - Fixed delay which shall be reported through registers as defined in IEEE 802.3.

Definitions of Timestamp and Reference Plane

• According to IEEE 802.3 Figure 90-3, the timestamp is generated at gRS layer, and after the path data delay is reported to the gRS layer and compensated, the timestamp reference plane would be the MDI.

• The Clause 3.1.18 of IEEE 1588-2008 provides the definition of timestamp, which should be the time, when a timestamp point (the first symbol after SFD) passes the reference plane (MDI as defined in IEEE 802.3-2018).

3.1.18 message timestamp point: A point within a Precision Time Protocol (PTP) event message serving as a reference point in the message. A timestamp is defined by the instant a message timestamp point passes the reference plane of a clock.

Option A/B + Method 1 (<u>tse_3cx_02_0520</u>): Timestamp is the time when the 1st symbol after SFD passes the reference plane (MDI).

Interoperation Between Different Methods

- <u>tse_3cx_02_0520</u> lists three options to generate timestamps at Tx:
 - Option A: 66B blocks and timestamps are not aligned at NxPCS lane transmitter
 - Option B: 66B blocks and timestamps are aligned at NxPCS lane transmitter
 - Option C: 66B blocks are aligned but timestamps are not aligned at NxPCS lane transmitter
- And two methods for handling multi-PCS lane distribution delay at Rx:
 - Method 1: Account for the delay between the MII and the lane that carries the message timestamp point of the PTP message
 - Method 2: Use a constant delay regardless of which lane carries the message timestamp point, because the Tx+Rx lane distribution delay is a constant for every lane.
- Using the spreadsheet <u>tse_multilane_TE_analysis</u>, 0 time error can be achieved by three approaches.
 - Rx Method 1 (accurate compensation) can work with Tx Option A & B.
 - Rx Method 2 (inaccurate compensation) works with Tx Option C.

TX option	RX method	Time Error									
			Block Time	640	ps	Block Time	640	ps	Block Time	640	ps
A	1	0	Tx Option	А		Tx Option	В		Tx Option	С	
			Rx Option	1		Rx Option	1		Rx Option	2	
В	1	0	Link delay	0	ps	Link delay	0	ps	Link delay	0	ps
		_	Number of lanes	20		Number of lanes	20		Number of lanes	20	
C	2	0	Resulting time error	0	ps	Resulting time error	0	ps	Resulting time error	0	ps
_		_]								

Multi-PCS Lane Distribution vs FEC Parity Bits

- It was argued that FEC parity bits were handled in a similar way as "Option C + method 2".
 - FEC parity caused timestamp error is not compensated on either side.
 - Time errors due to parity insertion/deletion on Tx and Rx cancel each other out.
- The method above was introduced when there were only Class A/B applications.
 - RS(544,514) FEC has 300 parity bits, which could introduce a maximum of 2.82 ns timestamp error on a 100GE link. This is trivial compared with the requirements (100ns/70ns).
 - Time error caused by PCS lane distribution is huge compared with Class C/D requirements (30ns/5ns) and even non-negligible for Class B for 100GE. Extra care shall be taken when choosing the options.

Ethernet Rate	PDDV_max caused by FEC parity bits	Percentage of Class B max TE	PDDV_max caused by PCS lane distribution	Percentage of Class D max TE	
50GE	5.65	8%	3.84	76.8%	
100GE(w/o FEC)	0	0%	12.16	243.2%	
100GE(w/KP4 FEC)	2.82	4%	12.16	243.2%	
200GE	2.82	4%	0.33	6.6%	
400GE	1.41	2%	0.35	7%	

Backward Compatibility?

- It is highly likely huge amount of equipment complying with the current IEEE 802.3-2018 is in service and meets Class C/D requirements when 802.3cx is released.
- How shall we provide backward compatibility if we do not compensate the PCS distribution delay?
 - A register (X) can be used to let the upper management know how it handles the PCS lane distribution delay, but will NOT solve the interop issue – it only broadcasts its own capability and relies on the other end to cooperate.
 - X = 1, PCS lane distribution delay is cancelled by the Rx side;
 - X = 0, 802.3-2018 compliant.
 - Upper layer management could decide how to use this register.
 - Beyond the scope of 802.3cx.

THANK YOU!

Background

 tse 3cx 02 0520 lists three possible solutions to compensate timestamp error caused by multi-PCS lane distribution.

