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Recall...

. At the 802.3cx meeting in Sept 2020, it was noted that the
suggestion from for dealing with multi-PCS
lane path data delay variation is inconsistent with what IEEE
802.3 has already specified for multi-lane FEC.

. This contribution gives details on this topic.
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https://www.ieee802.org/3/cx/public/sept20/he_3cx_01_0920.pdf

From Subclause 90.7 of IEEE 802.3-2018

For a PHY that includes an FEC function, the transmit and receive path data
delays may show significant variation depending upon the position of the
SFD within the FEC block. However, since the variation due to this effect in
the transmit path is expected to be compensated by the inverse variation
in the receive path, it is recommended that the transmit and receive path

data delays be reported as if the SFD is at the start of the FEC block.
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40GE/100GE Architecture

. From clause 80
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40GE/100GE PCS

. From clause 82

1.

2.

constant delay

constant delay

AM variable delay (resolved?)

See resolution for AM variable

delay in draft P802.3cx/DO0.2
Delay is constant but depends
on start-up or system
conditions

Figure 82-2 provides a functional block diagram of the 40GBASE-E PCS and 100GBASE-R PCS.
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40GE/100GE PCS block distribution

. From clause 82
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40GE/100GE Alignment Marker Insertion

From clause 82
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256B/257B Transcoding

. From clause 91

The message timestamp point
could be affected by the
presence of control blocks

Any delay shift at transcoder
will be mirrored by an opposite
delay shift at the de-transcoder
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Figure 31-3—Examples of the construction of t_xcoded
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40GE/100GE FEC

FEC has its own lane distribution
function

Based on 10-bit codewords instead of 66-bit
blocks

A FEC block always starts at the lowest FEC
lane and codewords are distributed in order
from the lowest lane to the highest lane

As per the statement in 90.7, the
message timestamp point is specified to
be moved to the start of the FEC block
to which it belongs, which ison lane O

Lane O has constant delay through combined
FEC multi-lane Tx distribution + Rx
multiplexing

Lane 0 has constant max delay for Tx FEC
codeword distribution (100% of combined
delay)

Lane 0 has constant min delay for Rx FEC
codeword multiplexing (0% of combined
delay)
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Conclusions

. In |[EEE 802.3-2018, the
data delay variation is:
- not consistent with

method to deal with FEC’s multi-lane path

. consistent with Method 2 and Option C from

(a.k.a. soln #3 in

and )

. It seems prudent to use the same method to deal with non-FEC

multi-lane path data de

. |t seems practical to inc
compliance to the new
methods

ay variations
ude register bit(s) that identify

P802.3¢cx “high accuracy timestamping”

. Existing implementations that do not comply to P802.3cx, would not
become “non-compliant” to IEEE 802.3

11

@ MICROCHIP


https://www.ieee802.org/3/cx/public/sept20/he_3cx_01_0920.pdf
http://www.ieee802.org/3/cx/public/april20/tse_3cx_02a_0420.pdf
http://www.ieee802.org/3/cx/public/july20/tse_3cx_01_0720.pdf
https://www.ieee802.org/3/cx/public/sept20/tse_3cx_01a_0920.pdf

Thank You




Proposed Text — implementation option 1 (1/2)

. Add the following text to Clause 90.7
Block distribution in a multi-lane PCS causes variance in the path data delay. Because
the data stream crossing the transmit xMIl is the same as the data stream crossing
the receive xMll, the sum of the transmit block distribution functional delay and the
receive block distribution functional delay is the same for every PCS lane.

For a transmit PHY that performs block distribution from the xMIl to multiple PCS
lanes (e.g., the 100GBASE-R PCS in clause 82), the path data delay variance
experienced by blocks transiting from the xMll to different PCS lanes is treated as a
constant value. The constant value that represents the block distribution function’s
delay is equal to half of the difference between the shortest distribution time from
the xMll to a PCS lane (e.g., for lane N of an N-lane PCS) and the largest distribution
time from the xMll to a PCS lane (e.g., for lane 0).
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Proposed Text — implementation option 1 (2/2)

. Add the following text to Clause 90.7, continued...

For a receive PHY that performs block distribution from multiple PCS lanes to the
xMll (e.g., the 100GBASE-R PCS in clause 82), the path data delay variance
experienced by blocks transiting from the per-lane outputs of the deskew buffer to
the xMll is treated as a constant value. The constant value that represents the block
distribution function’s delay is equal to half of the difference between the shortest
distribution time from the output of a deskew buffer [ane to the xMll (e.g., for lane 0)
and the largest distribution time from the output of a deskew buffer lane to the xMl|
(e.g., for lane N of an N-lane PCS).

The constant value for the receive PHY is equal to the constant value for the transmit
PHY. This constant value can be used to represent the multi-lane block distribution
function’s portion of the PCS delay when using the TimeSync PCS transmit path data
delay and the TimeSync receive path data delay.
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Proposed Text — implementation option 2

.- Enhance existing text in 90.7 on FEC so it also deals with multi-lane PCS.

. Replace “SFD” with “message timestamp point” throughout 90.7 (not all are shown
below)

. Insertions are highlighted in blue and deletions are highlighted in red.

For a PHY that includes an FEC and/or multilane distribution functions, the transmit and
receive path data delays may show significant variation depending upon the position of
the SEPmessage timestamp point within the FEC block and in the multilane distribution
sequence. However, since the variation due to this effect in the transmit path is
expected to be compensated by the inverse variation in the receive path, it is
recommended that the transmit and receive path data delays be reported as if the
SEBmessage timestamp point is at the start of the FEC block and multilane distribution
sequence. For PHYs with both FEC and multilane distribution, the start of the FEC block
is guaranteed to coincide with the start of a multilane distribution sequence.
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