Moving Forward in IEEE 802.3cz

Natalie Wienckowski - Affiliated with General Motors

Steve Swanson – Affiliated with Corning Incorporated

February 1, 2022

Motivation

 At the January 18 IEEE 802.3cz meeting, a motion was made to merge "swanson_3cz_02c_030821_AUTO_MDI_Baseline.pdf" into P802.3cz/D1.3 as per comment #173 on D1.2

Mover: Robert Grow

Seconder: Natalie Wienckowski

Results:

Yes: 37 No: 13 Abstain: 6 (74%)

The motion failed (2 more positive votes or 1 less negative vote and the motion would have passed)

There was Broad Support from the TF

Summary

- Yes votes from 37 individuals with 27 different affiliations
- Yes votes from 4 of 5 individuals affiliated with OEMs
- Yes votes from individuals affiliated with PHY chip manufacturers, optical device manufacturers, Tier 1 and Tier 2 suppliers as well as others

OEM Affiliations

- BMW
- Ford Motor Company
- General Motors
- Volkswagen AG
- Volvo

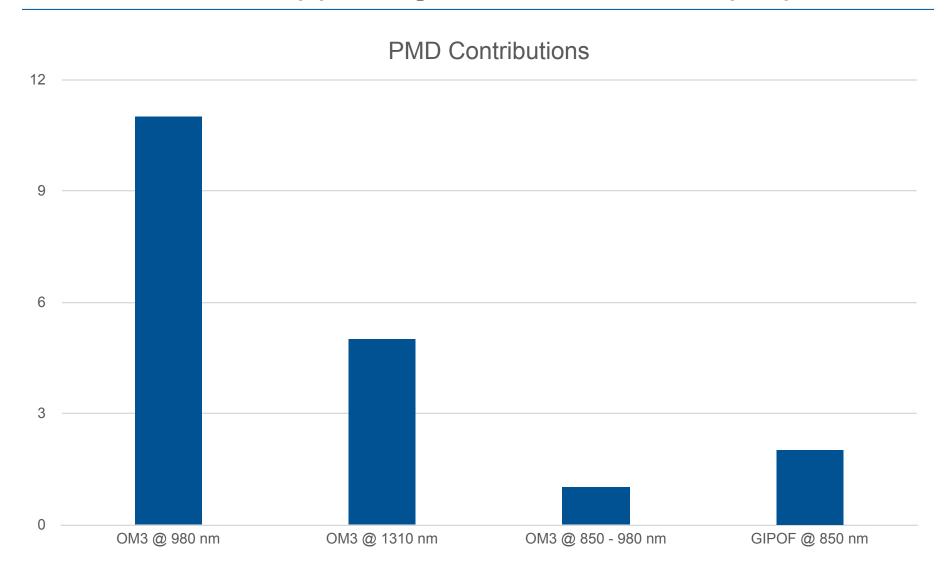
Tier 1 & 2 Supplier Affiliations

- Adamant Namiki Precision Jewel
- AT&T
- Broadcom
- CommScope
- Corning
- Finisar
- Furukawa Electric
- Futurewei
- HAT Labs
- Huawei
- HPE

Tier 1 & 2 Supplier Affiliations

- Inneos
- Keysight
- KDPOF
- Malicoat Networking Solutions
- Marvell
- MD Elektronik
- Megachips
- OFS
- POF Promotion
- Prysmian
- Sumitomo
- TRUMPF Photonic Components

Background


- Four PMD proposals differentiated by medium and wavelength have been considered by IEEE 802.3cz
 - 980 nm on graded-index OM3 Glass optical fiber
 - 850-980 nm on graded-index OM3 Glass optical fiber
 - 1310 nm on graded-index OM3 Glass optical fiber
 - 850 nm on graded-index Plastic optical fiber

Review of PMD proposals

- 980 nm on graded-index OM3 Glass optical fiber
 - Broad support in the TF
 - Meets all objectives
 - Large body of work has been presented to the TF
 - Ready now
- 1310 nm on OM3 fiber
 - Proposed in addition to 980nm
 OM3 at 10G and 25G
 - Lacks broad support in the TF
 - Does not support all objectives
 - Does not meet all CSDs

- 850-980 nm on graded-index OM3 Glass optical fiber
 - Current limits in 850nm VCSEL devices provide marginal reliability, severely impacting the link-budget
 - Broadband photodiode data for automotive environments has not been presented
 - Extra complexity of test and qualification
- 850 nm on graded-index Plastic optical fiber
 - Is on a significantly different timeline than glass PMDs
 - Cable/fiber samples are not available for independent testing
 - Does not support all objectives
 - Does not meet all CSDs

Contributions supporting the various PMD proposals

There is broad support for moving this project forward

- While 4 PMD proposals have been considered, only one has attained broad support in the IEEE 802.3cz TF
- Straw polls indicate that continuing to consider PMDs other than 980 nm on OM3 will significantly delay getting to WG ballot
- The IEEE 802.3cz TF Chair noted his responsibility to produce a draft standard, recommended practice, or guideline in a reasonable amount of time for review and approval by the WG
- January 20 802.3 WG discussion on P802.3cz status indicates a willingness for the 802.3 WG to take action if the TF fails to make progress

Recommendation supporting IEEE 802.3cz

- Revisit the January 18 motion in the IEEE 802.3cz TF meeting today
 - Further delay in the TF results in a lost opportunity for IEEE, the automotive industry and optics supporting these applications
 - Still allows comments in TF and subsequent WG ballot

Motion

Move to adopt PMD, MDI and Media baseline text proposal of slides 6 – 12 of https://www.ieee802.org/3/cz/public/3 aug 2021/www.ieee802.org/3/cz/public/3 aug 2021/ swanson 3cz 02c 030821 AUTO MDI Baseline.pdf

Moved: Natalie Wienckowski	
Seconded: Steve Swanson	
Technical 75%	
Results:	
/ :	
N:	

9

Thanks for your attention