Impact of water droplets on Expanded Beam (Lensed) Connector Insertion Loss

Rick Pimpinella, Yu Huang, Jose Castro
Panduit Labs, Panduit Corp.

Multi Gigabit Automotive Optical PHY Study Group
Ad hoc Telecon, August 4, 2020
Modeled Insertion Loss – Polymer Lens

Without Index Matching Gel, Total Loss = 1.85dB

With Index Matching Gel, Total Loss = 1.05dB

Index matching gel
C-Lens
Impact of water – commercial C-Lens

Dry Lenses
Loss = 1.08 dB

Water added

Large droplet of water (leaked off)
Loss = 1.17 – 1.26 dB

Small droplets remaining
Magnified view

Dry

Droplets
Laser Cleaving
Lot B: Multimode fiber, Sample # B004

Index depression clearly visible
Results: Multimode fiber samples

Maximum Cleave angle = 0.7°
Lot A: Single-mode fiber, Sample # A001

Core is clearly visible
Results: Single-mode fiber samples

Maximum Cleave angle = 0.7°
Optical coupling at interface
- Laser cleaved convex to mechanical cleaved flat end face

- Laser cleaved Stub fiber
- Mechanical cleaved Field fiber

- Spatial filtering at interface
 - Loss in coupled modes
- Can result in Modal Noise
 - Fluctuations of optical power at receiver
 - Reduced SNR
 - Performance degradation

Increase in NA
Standards specified end face geometry

Critical specifications
1. Radius of curvature
2. Apex offset
3. Protrusion
Summary

- Insertion loss for lens coupling can increase with water droplets – can be coated with hydrophobic

- The increase in IL is on the order of 0.25 dB

- Water ingress can be limited if required

- No requirement for water immersion for new high-bandwidth automotive optical connectors