End Face Termination for Butt Coupling (GI−POF)

Yasuhiro Hyakutake
Adamant Namiki Precision Jewel Co., Ltd.
29th Sept. 2020

IEEE P802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force
Agenda

• Laser Cut Process
 – GI-POF
 • Connection Loss
 • Modal Dispersion
 • Eye Pattern and BER
 • End Face Shape

• Additional Evaluation from Sept. 15th
 – 15m / 4 inline connection
 » Eye Pattern and BER
 » Modal Dispersion
Prepared Evaluation Fiber

• GI-POF
 – In this presentation, I evaluated with typical Graded Index (e.g. 50 micron core) plastic optical fiber.
 • Prepared the End Faces Combination of Optical Cables with LC Connecter (3m)
 – #1 Polished and Polished
 – #2 Polished and Laser Cut
 – #3 Laser Cut and Laser Cut
GI-POF Connection Measurement

Referenced Measurement

- Light source ($\lambda=850\text{nm}$)
- Mode Scrambler
- LC Connector
- Master Cable 3m
- Optical Power Meter

Actual Connection Measurement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>GI-POF</td>
<td>Polishing</td>
<td>Polishing</td>
<td></td>
<td>0.725</td>
<td>0.397</td>
<td>0.613</td>
</tr>
<tr>
<td></td>
<td>Polishing</td>
<td>Laser cut</td>
<td></td>
<td>0.702</td>
<td>0.370</td>
<td>0.590</td>
</tr>
<tr>
<td></td>
<td>Laser cut</td>
<td>Laser cut</td>
<td></td>
<td>0.355</td>
<td>0.497</td>
<td>0.526</td>
</tr>
</tbody>
</table>

- Faces of Combination with Polished or Laser Cut End Face

- Referenced Measurement
- Actual Connection Measurement
Probability Plot of Connection Loss

- 95% CI, (Confidence Interval)
 - Normal distribution [Upper/Lower] Fitted line
NFP: Near Field Pattern, Measurement (EF: Encircled Flux, Results)

Light source ($\lambda=850\text{nm}$) → Mode Scrambler → LC Connector → Master Cable → LC Connector → DUT Cable 3m → LC Connector → LC Connector → NFP Measurement System

Faces of Combination with Polished or Laser Cut End Face

Polishing	Polishing
Polishing | Laser cut
Laser cut | Laser cut

Polishing and Polishing
Polishing and Laser Cut
Laser Cut and Laser Cut

Polishing and Polishing
Polishing and Laser Cut
Laser Cut and Laser Cut
Eye Pattern and BER Evaluation with Optical Transceiver

- **Evaluation with SFP28(25GBASE-SR) Transceiver**
 - **Bit Rate**: 25.78Gb/s
 - **Data Pattern**: PRBS2^{31-1}
 - **BERT (Bit rate Error Ratio)**: 10^{-12}

<table>
<thead>
<tr>
<th>End Face Combination</th>
<th>Polished and Polished</th>
<th>Polished and Laser Cut</th>
<th>Laser Cut and Laser Cut</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Pattern</td>
<td>![Eye Pattern Image]</td>
<td>![Eye Pattern Image]</td>
<td>![Eye Pattern Image]</td>
</tr>
<tr>
<td>BER</td>
<td>10^{-12} [Error Free]</td>
<td>10^{-12} [Error Free]</td>
<td>10^{-12} [Error Free]</td>
</tr>
</tbody>
</table>

Ambient Temperature = 25 deg. C. (Room Temp.)
Details Views of Fiber End Face

- Measurement on 3D Laser Scanning Confocal Microscope

GI-POF
Polished Fiber End Face

GI-POF
Laser Cut Fiber End Face
Additional Evaluation from Sept. 15th
Eye Pattern and BER Evaluation with Optical Transceiver

- **Evaluation with SFP28(25GBASE-SR) Transceiver**

 Bit Rate: 25.78 Gb/s
 Data Pattern: PRBS2^{31-1}
 BER (Bit rate Error Ratio): 10^{-12}

GI-POF Eye Pattern Measurement and BER Results with Laser Cut End Face Combination

<table>
<thead>
<tr>
<th>Number of Connection(s)</th>
<th>Length</th>
<th>*Eye Pattern</th>
<th>*BER</th>
<th>*Connection Loss [dB]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td></td>
<td>10^{-12} [Error Free]</td>
<td>0** [**Origin of measurement]</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td></td>
<td>10^{-12} [Error Free]</td>
<td>0.226</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td></td>
<td>10^{-12} [Error Free]</td>
<td>0.337</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td></td>
<td>10^{-12} [Error Free]</td>
<td>0.504</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td></td>
<td>10^{-12} [Error Free]</td>
<td>0.791</td>
</tr>
</tbody>
</table>

Note: Ambient Temperature = 25 deg. C. (Room Temp.)

IEEE P802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force, Sept. 2020
NFP: Near Field Pattern, Measurement
(EF: Encircled Flux, Results)

Light source ($\lambda=850\text{nm}$) → Mode Scrambler → LC Connector → DUT 3m → LC Connector

NFP Measurement System

All Faces of Combination with Laser Cut End Face

NFP(EF) Measurement with Laser Cut Combinations

Radius [μm]

EF

- 3m
- 6m
- 9m
- 12m
- 15m

IEEE P802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force, Sept. 2020
Summary

- I evaluated laser cut process for GI-POF
 - Laser cut process had successful with GI-POF
 - The connection loss probability plot are shown under 1.5dB with 95% CI, (Confidence Interval)
 - The modal dispersion is similar as usual polishing end-face combination and stable until 15m / 4 inline.
 - The eye pattern and BER looks good with 15m / 4 inline connection.
 - The end face shape could modified and improve with laser cut process.

- So, I confidence the laser cut process is even practical for automotive applications.
Thank you!