

1

Plastic Optical Fiber for Automobile

Yuji Watanabe , AGC Inc.

IEEE P802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force Ad Hoc meeting on Feb. 9, 2021

Transmission capability at 25Gbps of GI-POF was reported at Ad Hoc teleconference (Sep. 29, 2020)

Environmental and mechanical evaluation results for automobile grade GI-POF are presented at this meeting

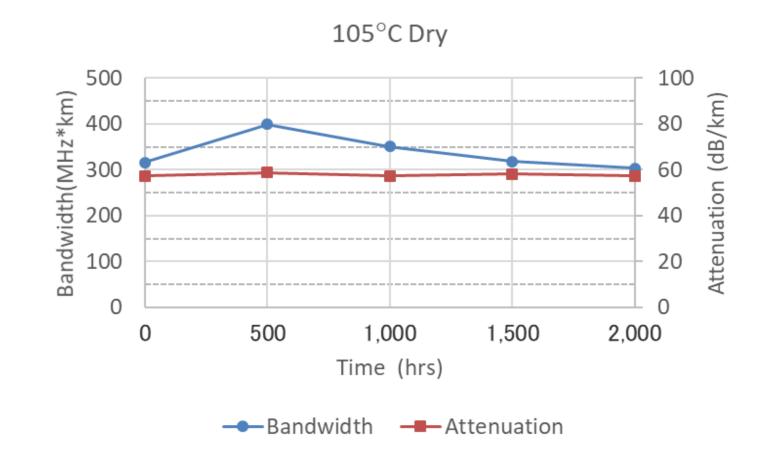
Merits of GI-POF for automobile industry is introduced from point of view of assembling and handling

Finally, link margin re-calculation based on contribution "Link budget analysis of 25 and 10 Gb/s using GI-POF" by Rubén Pérez-Aranda, KDPOF, is studied

Evaluation results

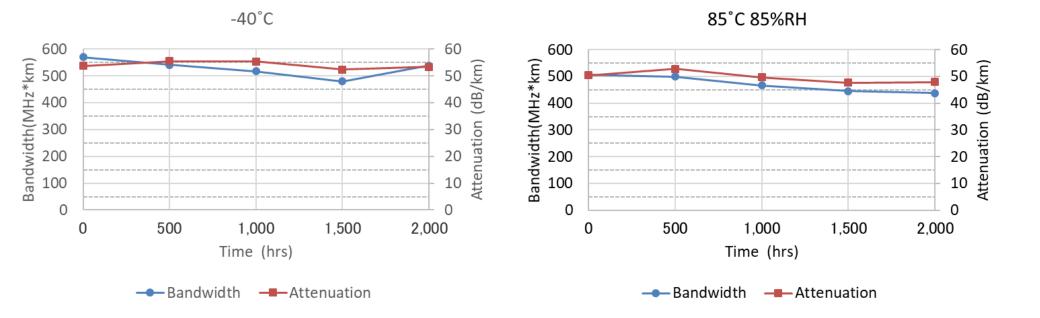
Test	Condition	Result	
Dry heat	105°C x 2000 hrs	No degradation	
Damp heat	85°C 85%RH x 2000hrs	No degradation	
Cold storage	-40°C x 2000 hrs	No degradation	
Bending loss	R=5 mm U turn	<0.1 dB	
Cyclic flex	R=5 mm x 500K cycles	<0.1 dB	
Compression load	L = 100 mm 1000N	<0.1 dB	

Environmental test


• No critical issue in 105°C, damp heat at 85°C 85%RH, and -40 °C

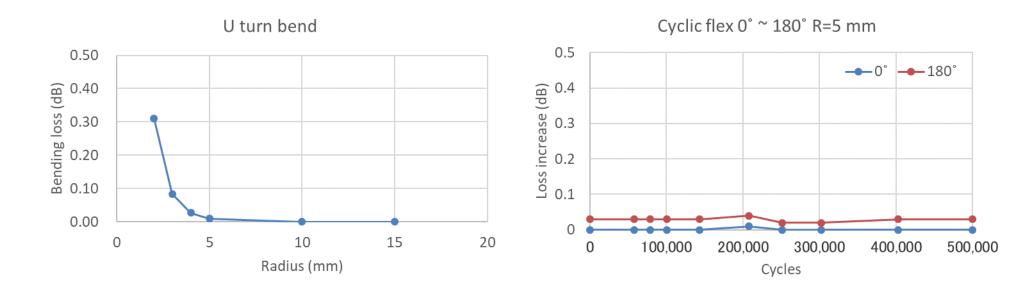
Mechanical test

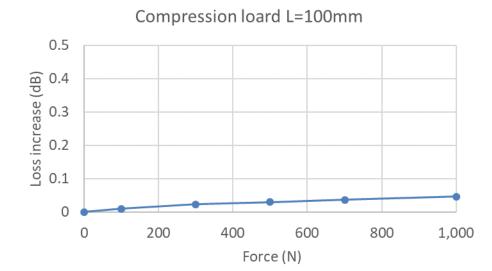
• No degradation


Environmental test results

Keep original bandwidth and attenuation after 2,000hrs at 105°C

Environmental test results 2


Also no degradation is found after 2,000 hrs at 85 °C 85%RH and -40 °C


6

Your Dreams, Our

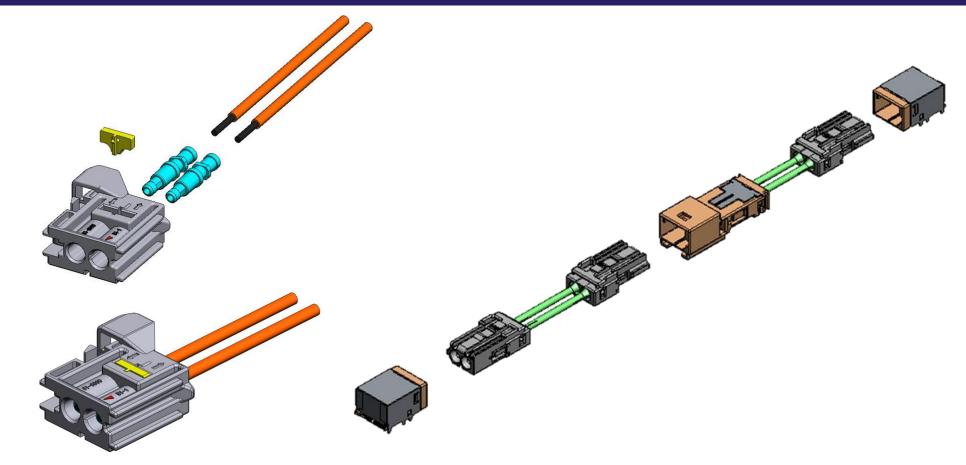
Mechanical test results as Φ2 cable

- Low bending loss: <0.1dB R=5 mm
- No degradation after 500K flex cycles with R=5mm and 1000N loading with 100 mm width (assuming stepping on cable by a person who has 100 kg weight).

POF in mobility

Application of POF in mobility

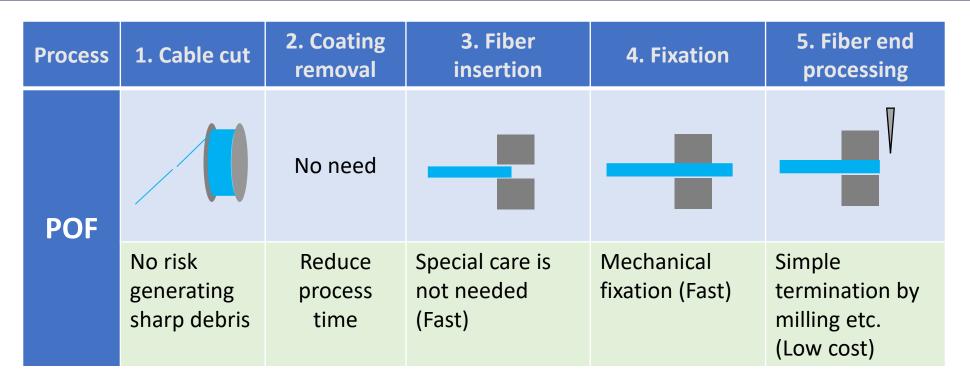
ARINC 629 in Boeing 777X



Source: MOST Cooperation

Besides bandwidth and EMI, easy termination and mechanical robustness are key motivation to apply POF in mobility.

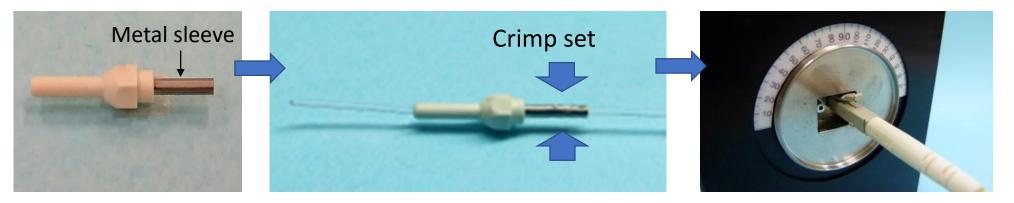
Connectors


MOST Connector

Connector for GEPOF and GI-POF

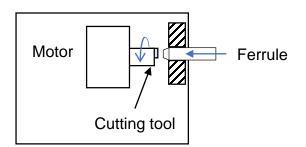
 >100M MOST nodes have been shipped for about 150 car models Similar design is applied to GEPOF and GI-POF

Assembling process for POF

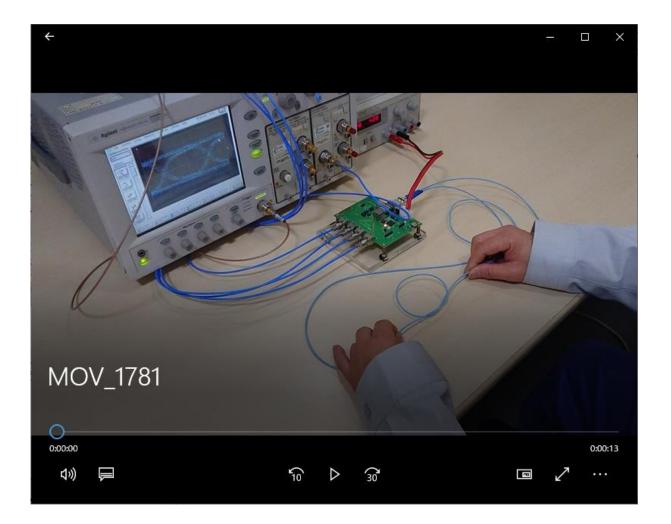


- No risk generating sharp debris during fiber cut (Occupational safety)
- Reducing process time (No coating removal, no risk of fiber break, mechanical fixation, fiber termination)
- No investment for expensive equipment such as laser cleaver

Example of easy termination



- Application: 1.25 Gbps industrial Ethernet (LC interface)
- Low cost plastic mold ferrule
- Mechanical fiber fixation (Crimp set without glue)
- No polishing, just milling fiber end face in a second


Plastic LC ferrule with metal sleeve

Crimp set (Mechanical fixation) Milling fiber end with rotating cutting tool

Robustness

Knot test @10.3125Gbps

- Easy termination: High production through put
- Simple fiber end face processing: No need to invest expensive equipment such as laser cleaver
- Robustness: Low risk of fiber break in assembling, installation and in service
- Safer for workers: No need to pay attention to fiber debris
- Possibility of BiDi : Reduce cable counts and weight (preferable for EV)

Link margin analysis

Based on the contribution "Link budget analysis of 25 and 10 Gb/s using GI-POF" by Rubén Pérez-Aranda, KDPOF, Link margin is recalculated with different fiber attenuation and connection loss

Ту	Perfluorinated GI-POF		
Operation temperature range (°C)		-40 ~ 105	
Core dia.(µm)		55	
Fiber dia.(µm)		490	
NA		0.22	
Attenuation (dB/km)	at 850 nm	≤ 100	
	at 980 nm	≤ 85	
Bandwidth (EMBc) (MHz*km)	At 850 and 980 nm	≥ 200	

Same transceiver can be applicable to GOF and POF, because POF has;

- Similar core diameter and NA as GOF
- Same operation wavelength (850 nm and 980 nm)

Link budget re-calculation

10Gbps

• Even though worst-case fiber attenuation and bandwidth, it can support 10Gbps over 40m transmission with four connections

25Gbps

- 40m transmission with four connections is not feasible due to higher attenuation of GI-POF, but 15m transmission is feasible with two or four connections (depends on loss per connection)
- 15m is practical length for a car

Considering merits of POF (assembling easiness in harness production and robustness in installation and in service etc.), we recommend GI-POF as one of optical fiber media for OMEGA

Proposal

 To define max channel insertion loss including in-line connections for each data rate irrespective of fiber medium as Table 115-16 802.3bv adopted

Parameter	2.5G	5G	10G	25G	Unit
Power budget	11.80*1			8.90*1	dB
Max channel insertion loss		TBD	TBD	dB	
Fiber medium	GOF/POF			-	

*1 https://www.ieee802.org/3/cz/public/22_dec_2020/perezaranda_3cz_02a_221220_reliability_linkbdget.pdf

	Units	RHA	RHB	RI	IC
Parameter		ts Fiber optic channel			
		Type I	Type I	Туре П	Type III
Link power budget (min)	dB	11	10	8	9.5
Channel insertion loss without in-line connections (max)	dB	9.5	9.5	8	3
Unallocated link margin (min) ^a	dB	1.5	0.5	0	6.5

Table 115–16—Worst case link power budget

^a Unallocated link margin may be used for in-line connections (connectors). Maximum 1.5 dB insertion loss per in-line connection is assumed.

Thank you for your attention.

