IEEE 802.3cz Multi-Gigabit Optical Automotive Ethernet Task Force – May 18, 2021 Teleconference

VCSEL design for automotive datacom
Experimental results for 980 nm versus 850 nm

Roger King, TRUMPF Photonic Components GmbH

Supported by Joseph Pankert, TRUMPF Photonic Components GmbH
VCSEL design for 25/50 Gb/s automotive datacom

Today’s 850nm 25G VCSEL design is on the edge for automotive

Today’s 25/50 Gb/s VCSELs are operated at 18 kA/cm², 70°C

But operation with <15 kA/cm² at chip backside up to 125°C is required to support 15 years car service life
Improvement strategy “reduce wear out scale”
The “how” is not clear

“$\sigma \ln < 0.45$“ is already very challenging for today’s 850nm VCSEL

“$\sigma \ln < 0.25$“ is an unrealistic target for long term production
Improvement strategy “improve wear out location”

The how is clear: 980nm instead of 850nm VCSEL

“>3x of today’s t50%“ is a realistic design target

Wearout data 980nm → see pages 7,8,9
VCSEL design options for 25/50 Gb/s automotive datacom

980nm is the preferred design from a pure VCSEL point of view

<table>
<thead>
<tr>
<th></th>
<th>850nm VCSEL</th>
<th>980nm VCSEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>lower current, lower power dissipation, higher heat removal</td>
<td></td>
<td></td>
</tr>
<tr>
<td>@ 25/50 Gbd, 125°C operation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compressive strain (for differential gain)</td>
<td>lower</td>
<td>higher</td>
</tr>
<tr>
<td>thermal conductivity of Bragg mirror</td>
<td>lower</td>
<td>higher</td>
</tr>
<tr>
<td>free carrier absorption</td>
<td>less</td>
<td>more</td>
</tr>
<tr>
<td>DBR layer stack</td>
<td>thinner</td>
<td>thicker</td>
</tr>
<tr>
<td>turn on voltage</td>
<td>higher</td>
<td>lower</td>
</tr>
<tr>
<td>thermal escape of carriers from quantum wells</td>
<td>more</td>
<td>less</td>
</tr>
<tr>
<td>less variability in wearout</td>
<td></td>
<td></td>
</tr>
<tr>
<td>quantum well growth window</td>
<td>tighter</td>
<td>wider</td>
</tr>
<tr>
<td>quantum well thickness</td>
<td>thinner</td>
<td>thicker</td>
</tr>
<tr>
<td>wafer quantities</td>
<td>low</td>
<td>high (at 940 nm)</td>
</tr>
<tr>
<td>higher resistance to maverick defect propagation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>compressive strain (for dislocation pinning)</td>
<td>lower</td>
<td>higher</td>
</tr>
<tr>
<td>better robustness</td>
<td></td>
<td></td>
</tr>
<tr>
<td>flip-chip</td>
<td>top emission</td>
<td>top or bottom emission</td>
</tr>
</tbody>
</table>
Industrialization of 980nm VCSELs

The majority of VCSELs are 940nm. 850nm is the exception!

- Yole Développment 2020 report:
 - 2021 sensors VCSEL count: 1.6 billion units
 - 2021 datacom VCSEL count: 65 million units

- The majority of the ~50 VCSEL suppliers is active in 940nm and 850nm
 - Biggest hurdle at 850nm: epitaxial “alchemy”
 - Therefore, most VCSEL suppliers fail
 - “Reliable” QWs at 940nm are much easier

- 940nm .. 1065nm is very similar in terms of material composition, overall reliability and datacom performance

- No significant difference in cost between 850nm and 980nm VCSEL chips

- InGaAs PDs for 980nm are available

Datacom (850nm)

Sensing (940nm)
980nm versus 850nm 25G VCSEL design wear out reliability at 140°C, 10mA stress

850nm VCSEL
- Time to 50% fails = 853hrs @ 140°C, 10mA

Long wavelength VCSEL
- No wearout fails so far

850nm VCSEL

- No wearout fails so far

980nm endurance advantage already

>5x
980nm versus 850nm 25G VCSEL design wear out reliability at 155°C, 8mA stress

850nm VCSEL
- Time to 50% fails = 561hrs @ 155°C, 8mA

Long wavelength VCSEL
- No wearout fails so far

980nm endurance advantage already >9x

Stress condition: 155°C chip backside (substrate) temperature, 8mA continuous wave laser current
Every 24h the VCSEL is cooled down to ~40°C and the output power at 7mA drive current is recorded
980nm versus 850nm 25G VCSEL design wear out reliability at 170°C, 6mA stress

850nm VCSEL
- Time to 50% fails = 307hrs @ 170°C, 6mA

Long wavelength VCSEL
- No wearout fails so far

980nm endurance advantage already >>10x

Stress condition: 170°C chip backside (substrate) temperature, 6mA continuous wave laser current
Every 24h the VCSEL is cooled down to ~40°C and the output power at 7mA drive current is recorded
Summary

From a VCSEL point of view the 980nm design is the better choice for 25/50 Gb/s automotive applications

- 980nm VCSELs are far more robust than 850nm VCSELs
 - Use of aluminum-free quantum well barriers is the game-changer
- Automotive is not requiring backwards compatibility and offers the chance to take advantage of higher reliability at 980nm
 - Shorter link lengths (<40m) tolerate more dispersion in the optical fiber at 980nm
- There are plenty of suppliers capable of delivering 980nm VCSELs

Transferring the 980nm 25/50 Gb/s automotive VCSEL design to production is the next step

- Wearout test on 980 ..1040nm feasibility samples at TRUMPF will be concluded after 5000hrs → no fails observed so far
- Design for 980nm available at TRUMPF and likely at other vendors
- Manufacturing will be done on existing and released production equipment and processes
 - Automotive grade product prototypes for qualification testing are planned for Q3 2022
Thank you!

Roger King
roger.king@trumpf.com