d. KEYSIGHT

TDFOM simplification proposal

Rubén Pérez-Aranda, KDPOF David Leyba, Keysight

Objective

- This contribution proposes a simplification of the TDFOM reference receiver and figure of merit of [1]
- Simplification is addressed in several ways:
- Added noise is white, so noise filter is removed
- Noise is added at the sampler output, so analytical calculation of standard deviation after equalizer is direct (noise variance measurement is removed)
- Because noise is added at sampler output, the dependency with oversample factor (samples per UI) is also removed
- Improvement in OMA calculation for PAM4 is also proposed
- CID length and pre/post cursors lengths is updated according to SSPR-PAM4 pattern
- New TDFOM proposal has been validated vs OMA receiver sensitivity

Original TDFOM from [1]

Digital equalizer

New TDFOM

Digital equalizer

H 1 is removed

BASE-AU 980nm/OM3 reference receiver and analysis

- The input low pass filter shall be $4^{\text {th }}$ order Bessel-Thomson with $B W-3 \mathrm{~dB}=$ 16.4 GHz
- Acquisition oversampling (samples per unit interval) shall be, Ov>15
- Waveform averaging shall be enabled to eliminate noise; averaging factor shall be selected high enough to avoid noise affecting the TDFOM analysis (error below 0.05 dB)
- Filters shall be scaled according to symbol period and modulation format as:
$f_{1}=\frac{1}{10 \cdot T_{S}}+5 \cdot 10^{8} \quad(\mathrm{~Hz}) ;$
$f_{3}=\frac{1}{2 \cdot T_{S}}$

$$
\begin{aligned}
& f_{2}=\left\{\begin{array}{cc}
\frac{1}{5 \cdot T_{S}}, & \text { NRZ } \\
\frac{1}{3 \cdot T_{S}}, & \text { PAM4 }
\end{array}\right. \\
& f_{4}=\left\{\begin{array}{cc}
\infty, & \mathrm{NRZ} \\
\frac{1}{2 \cdot T_{S}}, & \text { PAM4 }
\end{array}\right.
\end{aligned}
$$

Standard deviation

BASE-AU 980nm/OM3 reference receiver and analysis

- BER calculation:
- Calculate the noise sequence in the output of equaliser as $n=w-s$
- Calculate the standard deviation σ_{n}

$$
\sigma_{n}=\sigma_{n_{i n}} \cdot \sqrt{\sum_{i=0}^{N_{G}-1} g_{i}^{2}}
$$

- Define the thresholds vector $T H v=[0]$ for NRZ, and $T H v=[-2 / 3,0,+2 / 3]$ for PAM4
- Define $\mathrm{N}_{\text {th }}=1$ for NRZ, and $\mathrm{N}_{\text {th }}=3$ for PAM4
- Calculate the histogram of signal s, where the value of each bin $h(i)$ is normalised to relative probability, such that $h(i)=c(i) / N_{h}$, where c (i) is the number of elements in the bin centred in e (i) with width Δe, and N_{h} is the number of elements of signal s
- $\Delta e=\left(\max (s)-\min (s) / / N_{n}\right.$
- N_{h} shall be ≥ 500
- For each $T H v(k)$:
- Calculate $i h_{p}$ as the bins that meet $e(i)>T H v(k)$
- Calculate $i h_{n}$ as the bins that meet $e(i) \leq T H v(k)$
- Calculate $\operatorname{SERth}_{\text {th }}(k)$ as:

$$
S E R_{t h}(k)=\frac{1}{2} \sum_{i=\min \left(i h_{n}\right)}^{\max \left(i h_{n}\right)} h(i) \cdot \operatorname{erfc}\left(\frac{T H v(k)-e(i)}{\sigma_{n} \sqrt{2}}\right)+\frac{1}{2} \sum_{i=\min \left(i h_{p}\right)}^{\max \left(i h_{p}\right)} h(i) \cdot \operatorname{erfc}\left(\frac{e(i)-T H v(k)}{\sigma_{n} \sqrt{2}}\right)
$$

where $\operatorname{erfc}(x)$ is the complementary error function defined as:

$$
\operatorname{erfc}(x)=\frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^{2}} d t
$$

OMA calculation for PAM4

BASE-AU 980nm/OM3 reference receiver and analysis

- OMA calculation at EQ output:
- Define OMA eq as the OMA of signal s
- OMA shall be measured using continuous identical digits (CID)
- Search for positive CID as continuous samples of signal s with value >0, for NRZ, or with value $>2 / 3$, for PAM4
- Search for negative CID as continuous samples of signal s with value <0, for NRZ, or with value $<-2 / 3$, for PAM4
- CID sequence length shall be ≥ 14 for NRZ, ≥ 7 for PAM4
- For all the CID sequences that meet length constraint, remove:
- For NRZ: first 6 and last 6 samples
- For PAM4: first 3 and last 2 samples
- For the remaining symbols of all the CID sequences calculate the average value
- For positive CID sequences, we obtain OMA ${ }_{p}$
- For negative CID sequences, we obtain OMAn
- $O_{\text {Oq }}=O M A_{p}-O M A_{n}$
- OMA calculation at EQ input
- Calculate:

$$
O M A_{i n}=\frac{O M A_{e q}}{G_{e q}}
$$

TDFOM calculation

BASE-AU 980nm/OM3 reference receiver and analysis

- TDFOM calculation
- Define reference Q-factor Qo as:
- $Q_{0}=3.5741$ for NRZ, consistent with $B E R=1.757 \cdot 10^{-4}$
- $Q_{0}=3.4981$ for PAM4, consistent with $B E R=1.757 \cdot 10^{-4}$
- Calculate transmitter and distortion figure of merit (TDFOM) as:

$$
T D F O M=10 \cdot \log _{10}\left(\frac{O M A_{i n} \sqrt{O v}}{2(M-1) \sigma_{n_{i n}} Q_{0}}\right)-\text { TDFOM }_{0} \quad \text { TDFOM }=10 \cdot \log _{10}\left(\frac{O M A_{i n}}{2(M-1) \sigma_{n_{i n}} Q_{0}}\right)-T_{D F O M}
$$

where $\mathrm{M}=2$ for NRZ , and $\mathrm{M}=4$ for PAM4.

- TDFOM_{0} is calculated to get TDFOM $=0 \mathrm{~dB}$ when an ideal transmitter (square pulse) is connected to the reference receiver
- It depends on bit-rate:
- For $50 \mathrm{~Gb} / \mathrm{s}$: TDFOM $_{0}=4.47 \mathrm{~dB} 2.83113$
- For $25 \mathrm{~Gb} / \mathrm{s}$: TDFOM $_{0}=4.27 \mathrm{~dB} 3.92395$
- For $10 \mathrm{~Gb} / \mathrm{s}$: TDFOM $_{0}=3.29 \mathrm{~dB} 3.63153$
- For $5 \mathrm{~Gb} / \mathrm{s}$: TDFOM $_{0}=2.59 \mathrm{~dB} \quad 3.60715$
- For $2.5 \mathrm{~Gb} / \mathrm{s}:$ TDFOM $_{0}=1.84 \mathrm{~dB} 3.59469$
- TDFOM ${ }_{0}$ values are obtained by simulation connecting a square pulse transmitter to the reference receiver input

New TDFOM vs. RX sensitivity

Fitting: $O M A_{T P 4}=T D F O M+K$

References

- [1] R. Pérez-Aranda, "BASE-AU 980nm/OM3 baseline. Reference receiver and transmitter and distortion figure of merit," February 2022, [Online], Available: https://www.ieee802.org/3/cz/public/8 feb 2022/ perezaranda 3cz 01c 080222 TDFOM.pdf

Thank you

