TDFOM simplification proposal

Rubén Pérez-Aranda, KDPOF
David Leyba, Keysight
Objective

- This contribution proposes a simplification of the TDFOM reference receiver and figure of merit of [1]

- Simplification is addressed in several ways:
 - Added noise is white, so noise filter is removed
 - Noise is added at the sampler output, so analytical calculation of standard deviation after equalizer is direct (noise variance measurement is removed)
 - Because noise is added at sampler output, the dependency with oversample factor (samples per UI) is also removed

- Improvement in OMA calculation for PAM4 is also proposed
 - CID length and pre/post cursors lengths is updated according to SSPR-PAM4 pattern

- New TDFOM proposal has been validated vs OMA receiver sensitivity
Original TDFOM from [1]

\[
\begin{align*}
\text{BT4 BW}_{3\text{dB}} &= 16.4 \text{ GHz} \\
\end{align*}
\]

Model OM3 fiber response at 980nm, 40m

Waveform averaging \(\tilde{u} \)

DC unbias
\[
\begin{align*}
\alpha &= E[\tilde{x}] \\
y &= x - \alpha
\end{align*}
\]

Gain norm
\[
\beta = \max(|y|)
\]

\[
y = \frac{y}{\beta}
\]

Model of TIA input referred noise

\[
H_1(f) = 1 + j \frac{f}{f_1}
\]

Model of TIA response

\[
H_1(f)
\]

\[
\sigma_{\text{in}}
\]

WGN

\[
n_{\text{in}}
\]

Model of antialias filter

1st order \(\text{BW}_{3\text{dB}} = f_3 \)

1st order \(\text{BW}_{3\text{dB}} = f_4 \)

ADC model and timing recovery

Sampler
\(T_s \)

Timing recovery

\(\phi \)

Digital equalizer (MMSE-DFE with ideal feedback)

\[
G(z)
\]

\[
1 - B(z)
\]

\[
G(z)
\]

\[
B(z)
\]

MMSE Calculation

\[
\text{pilot / reference}
\]

\[
p
\]

\[
w
\]

noiseless

noisy

\[
s
\]

IEEE 802.3cz Task Force - May 2022 Interim
New TDFOM

\[u \xrightarrow{\text{O/E, Osc.}} \tilde{u} \rightarrow \text{Waveform averaging} \rightarrow x \xrightarrow{\text{DC unbias}} y = x - \alpha \rightarrow y \xrightarrow{\text{Gain norm}} z = y / \beta \]

\[H_2(f) \rightarrow H_3(f) \rightarrow H_4(f) \rightarrow \text{Sampler} T_s \rightarrow \phi \rightarrow \text{to equalizer} \]

Butterworth 2nd order BW\(_{3dB} = f_2\)

1st order BW\(_{3dB} = f_3\)

1st order BW\(_{3dB} = f_4\)

Model of TIA response

Model of antialias filter

ADC model and timing recovery

Digital equalizer (MMSE-DFE with ideal feedback)

Model OM3 fiber response at 980nm, 40m

\[G(z) \]

\[1 - B(z) \]

\[G(z) \]

\[B(z) \]

\[p \]

\[n_{\text{in}} \]

\[\sigma_{n_{\text{in}}} \]

\[w \]

\[s \]

noiseless

noisy

MMSE Calculation

IEEE 802.3cz Task Force - May 2022 Interim
BASE-AU 980nm/OM3 reference receiver and analysis

- The input low pass filter shall be 4th order Bessel-Thomson with BW\textsubscript{-3dB} = 16.4 GHz

- Acquisition oversampling (samples per unit interval) shall be, Ov > 15

- Waveform averaging shall be enabled to eliminate noise; averaging factor shall be selected high enough to avoid noise affecting the TDFOM analysis (error below 0.05 dB)

- Filters shall be scaled according to symbol period and modulation format as:

 \[
 f_1 = \frac{1}{10 \cdot T_s} + 5 \cdot 10^8 \text{ (Hz)};
 \]

 \[
 f_3 = \frac{1}{2 \cdot T_s};
 \]

 \[
 f_4 = \left\{
 \begin{array}{ll}
 \frac{1}{5 \cdot T_s}, & \text{NRZ} \\
 \frac{1}{3 \cdot T_s}, & PAM4 \\
 \infty, & \text{NRZ} \\
 \frac{1}{2 \cdot T_s}, & PAM4
 \end{array}
 \right.
 \]
• BER calculation:
 • Calculate the noise sequence in the output of equaliser as \(n = w - s \)
 • Calculate the standard deviation \(\sigma_n \)
 • Define the thresholds vector \(TH_v = [0] \) for NRZ, and \(TH_v = [-2/3, 0, +2/3] \) for PAM4
 • Define \(N_{th} = 1 \) for NRZ, and \(N_{th} = 3 \) for PAM4
 • Calculate the histogram of signal \(s \), where the value of each bin \(h(i) \) is normalised to relative probability, such that \(h(i) = c(i)/N_h \), where \(c(i) \) is the number of elements in the bin centred in \(e(i) \) with width \(\Delta e \), and \(N_h \) is the number of elements of signal \(s \)
 • \(\Delta e = (\text{max}(s) - \text{min}(s))/N_h \)
 • \(N_h \) shall be \(\geq 500 \)
 • For each \(TH_v(k) \):
 • Calculate \(i_{hp} \) as the bins that meet \(e(i) > TH_v(k) \)
 • Calculate \(i_{hn} \) as the bins that meet \(e(i) \leq TH_v(k) \)
 • Calculate \(SER_{th}(k) \) as:
 \[
 SER_{th}(k) = \frac{1}{2} \sum_{i=\text{min}(i_{hn})}^{\text{max}(i_{hn})} h(i) \cdot \text{erfc}\left(\frac{TH_v(k) - e(i)}{\sigma_n \sqrt{2}} \right) + \frac{1}{2} \sum_{i=\text{min}(i_{hp})}^{\text{max}(i_{hp})} h(i) \cdot \text{erfc}\left(\frac{e(i) - TH_v(k)}{\sigma_n \sqrt{2}} \right)
 \]
 where \(\text{erfc}(x) \) is the complementary error function defined as:
 \[
 \text{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_x^{\infty} e^{-t^2} \, dt
 \]

\[
\sigma_n = \sigma_{n_{in}} \cdot \sqrt{\sum_{i=0}^{N_G-1} g_i^2}
\]
OMA calculation for PAM4

BASE-AU 980nm/OM3 reference receiver and analysis

• OMA calculation at EQ output:
 • Define OMA_{eq} as the OMA of signal s
 • OMA shall be measured using continuous identical digits (CID)
 • Search for positive CID as continuous samples of signal s with value > 0, for NRZ, or with value > 2/3, for PAM4
 • Search for negative CID as continuous samples of signal s with value < 0, for NRZ, or with value < -2/3, for PAM4
 • CID sequence length shall be ≥ 14 for NRZ, ≥ 7 for PAM4
 • For all the CID sequences that meet length constraint, remove:
 • For NRZ: first 6 and last 6 samples
 • For PAM4: first 3 and last 2 samples
 • For the remaining symbols of all the CID sequences calculate the average value
 • For positive CID sequences, we obtain OMA_p
 • For negative CID sequences, we obtain OMA_n
 • OMA_{eq} = OMA_p - OMA_n

• OMA calculation at EQ input
 • Calculate:
 $$OMA_{in} = \frac{OMA_{eq}}{G_{eq}}$$
TDFOM calculation

BASE-AU 980nm/OM3 reference receiver and analysis

- **TDFOM calculation**

 - Define reference Q-factor Q_0 as:
 - $Q_0 = 3.5741$ for NRZ, consistent with $BER = 1.757 \cdot 10^{-4}$
 - $Q_0 = 3.4981$ for PAM4, consistent with $BER = 1.757 \cdot 10^{-4}$

 - Calculate transmitter and distortion figure of merit (TDFOM) as:

 $$TDFOM = 10 \cdot \log_{10} \left(\frac{OMA_{in} \sqrt{Q_0}}{2(M-1)\sigma_{in} Q_0} \right) - TDFOM_0$$

 where $M = 2$ for NRZ, and $M = 4$ for PAM4.

 - **TDFOM$_0$** is calculated to get $TDFOM = 0$ dB when an ideal transmitter (square pulse) is connected to the reference receiver

 - It depends on bit-rate:
 - For 50 Gb/s: $TDFOM_0 = 2.83113$ dB
 - For 25 Gb/s: $TDFOM_0 = 3.92395$ dB
 - For 10 Gb/s: $TDFOM_0 = 3.63153$ dB
 - For 5 Gb/s: $TDFOM_0 = 3.60715$ dB
 - For 2.5 Gb/s: $TDFOM_0 = 3.59469$ dB

 - TDFOM$_0$ values are obtained by simulation connecting a square pulse transmitter to the reference receiver input
New TDFOM vs. RX sensitivity

Fitting: $OMA_{TP4} = TDFOM + K$

- **50 Gb/s**
 - 3 VCSEL driver designs
 - Tbs = -40, 25 and 125 ºC
 - 1 RX design at 125ºC

- **25 Gb/s**
 - 4 VCSEL driver designs
 - Tbs = -40, 25 and 125 ºC
 - 1 RX design at 125ºC

- **10 Gb/s**
 - 2 VCSEL driver designs
 - Tbs = -40, 25 and 125 ºC
 - 1 RX design at 125ºC
References

Thank you