802.3da Power Classes

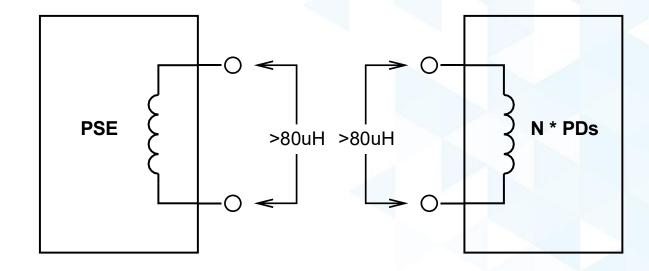
Michael Paul (ADI)

Heath Stewart (ADI)

George Zimmerman (CME Consulting)

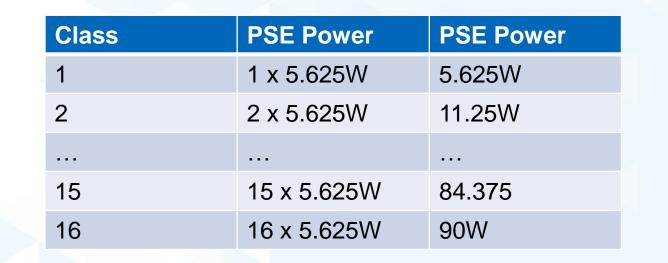
AHEAD OF WHAT'S POSSIBLE™

1 // 25 January 2021


Critical Power Parameters

- Coupling Inductance (L_{PD}) needs to be resolved to move power specification forward
 - L_{PD} Affects economic feasibility and classification timing
 - N (num PDs) Affects Inductor Size L_{PD}
 - Droop (VDROOP, TDROOP) Determines LPD
 - Bit Rate Determines L_{PD}
- Optimize L_{PD} to minimize cost and size
- Make L_{PD} inversely proportional to PD current
 - Allow high-power PDs to use lower L_{PD} since fewer high-power devices can be connected

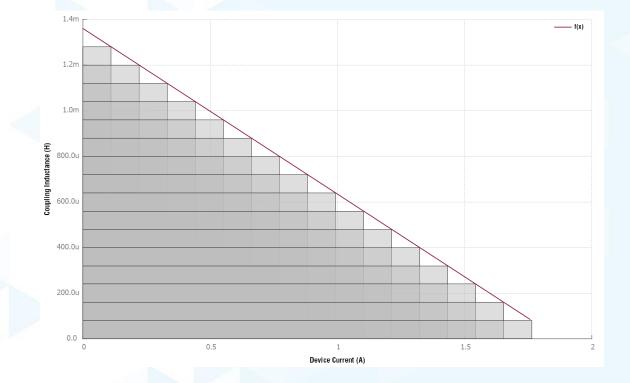
Keep total inductance > 40uH



Parameter name	Unit of measure	Minimum value	Maximum value
R	kW	10	—
L	μΗ	80	—
C _{tot}	pF	—	180
C _{node}	pF	_	15

Choosing Power Classes

- Set 90W maximum guaranteed PSE output
- Assume each mixing segment can support maximum of 16 PDs
- Divide 90W into 16 Classes
- Classes are linearly distributed
 - 90W / 16 Classes = 5.625W / Class
- Classes are 'Tokens'
 - Each mixing segment has 16 tokens
 - Tokens use power budget
 - 1 x Class 16 (90W)
 - 1 x Class 15, 1 x Class 1 (84.375W + 5.625W = 90W)
 - 16 x Class 1 (16 x 5.625W = 90W)
 - 8 x Class 2 (8 x 11.25W = 90W)
 - 4 x Class 4 (4 x 22.5W = 90W)
 - 1 x Class 8, 1 x Class 4, 1 x Class 3, 1 x Class 1 (90W)
 - Etc...
- Sum of PD classes on a mixing segment <=16</p>
 - Customer can sum the classes of attached devices to determine if another device can be added to a mixing segment



Choose Coupling Inductance By Class

- Set 80uH as minimum lumped inductance for all PDs
- ► 80uH x 16 Classes = 1280uH
 - Class 1 coupling inductance = 1280uH
 - Class 16 coupling inductance = 80uH
- Classes are 'Tokens'
 - Each mixing segment has 16 tokens
 - Tokens use inductance budget
 - 1 x Class 16 (80 uH)
 - 16 x Class 1 (1280uH / 16 = 80uH)
 - 1 x Class 15, 1 x Class 1 (85.3uH || 1280uH = 80uH)
 - 8 x Class 2 (640uH / 8 = 80uH)
 - 4 x Class 4 (320 / 4 = 80uH)
 - 1 x Class 8, 1 x Class 4, 1 x Class 3, 1 x Class 1 (80uH)
 - Etc...
 - Sum of PD classes on a mixing segment <=16</p>

Continuing work

- Agree on minimum total inductance for the system (40uH?)
 - Trade off inductor size/cost with PHY complexity
 - Work on SCCP Timing
- Calculate delivered power
 - Cable thickness
 - Cable length
 - Device Separation
 - Connector Resistance
- Determine SCCP (detection) timing
- Verify CNODE Estimation
- Update Models