

Dynamic PLCA Node ID Assignment Piergiorgio Beruto March, 10th 2021

- 802.3da has a formal objective to define an "optional PLCA node ID allocation method"
 - AKA "Dynamic PLCA", or D-PLCA in short
- Presentations given so far:
 - <u>http://www.ieee802.org/3/SPMD/public/apr0820/spmd_nodeid_040820.pdf</u>
 - https://www.ieee802.org/3/da/public/jul20/jones spmd 01 0720.pdf
 - <u>https://www.ieee802.org/3/da/public/102120/dalmia_3da_01_102120.pdf</u>
 - https://www.ieee802.org/3/da/public/110420/beruto 3da 01 110420.pdf
 - <u>https://www.ieee802.org/3/da/public/022421/dalmia_3da_022421.pdf</u>
- This presentation proposes a baseline adoption for D-PLCA
 based on the "physical layer solution" shown in <u>beruto 3da 01 110420.pdf</u>

Goals and requirements

- As discussed in https://www.ieee802.org/3/SPMD/email/msg00223.html
 - Be interoperable with CSMA/CD nodes on the network in a plug-and-play matter, without reconfiguration on detected errors
 - Which also implies: be interoperable with 802.3cg PLCA enabled nodes on the same mixing-segment without specific/additional configuration
 - Be at least as fast as other upper-layer node ID allocation methods (e.g. LLDP)
 - Be compatible with nodes transitioning into a sleep state, where they are powered down and do not communicate
 - keep at least the same level of EMC performance as in 802.3cg
 - a lot of work has been done in 802.3cg not to preclude meeting industrial and automotive requirements
- Additionally
 - Do not hamper current 802.3cg PLCA network performance (latency, throughput, fairness)
 - have D-PLCA be optional to implement /enable (still allowing static PLCA configuration)

Constraints to preserve 802.3cg compatibility

 \rightarrow

- We shall not rely on handling detected collisions
 - Collision detection belongs to the Physical Layer but collision handling does not
- Do not add any new physical layer signaling
 - Any signal other than a valid preamble, BEACON or COMMIT will be incompatible with Clause 148
 - That would make existing PLCA nodes go into a recovery/resync state
- We should avoid **periodic** physical layer signaling on the line
 - PLCA nodes would react to that by signaling a collision in case of concurrent transmissions
 - non-PLCA enabled nodes will assert CRS at each transmission, causing deferral and possibly hampering media access fairness
 - may (likely) impact EMC/EMI performance

PROPOSAL

Concept - Overview

- Use the "duck" algorithm
 - "If it looks like a duck, swims like a duck, and quacks like a duck, then it probably is a duck"
 - Start over if it wasn't
- Use the concept of "stolen TO"
 - detecting that some other node is transmitting during a node's TO
 - Kind of playing "bocce" where successful transmissions kick other nodes out of the current ID
- Keep a list of used TOs by detecting transmissions
 - $-\,$ free up TOs using an AGING criteria
 - Coordinator (ID = 0) dynamically adjusts plcaNodeCount
- Concept similar to MAC address learning in switches or dynamic Wi-Fi channel selection

Page 6

CALOVATECH The Art of Silicon Sculpting

Concept - Stolen TO

- We call a stolen TO the event when a node detects another node transmitting during the former's transmit opportunity
- This can happen in the following situations
 - Two or more nodes have the same ID
 - There are non-PLCA nodes on the mixingsegment
- Can be easily detected extracting the information from the **existing** Clause 148 Control State Diagram

IEEE 802.3da

Carrovatech

The Art of Silicon Sculpting

Concept - Aging (1)

- We want to keep a table of "used" TOs by detecting transmissions
 - allows the follower nodes to select a (possibly) free ID
 - allows the coordinator node (the one sending BEACONs) to adjust plcaNodeCount according to the effective number of nodes on the mixing-segment
 - every node on the mixing-segment maintains its own table (!)
- If a node is not using its TO for some time (aging time), it is considered to have left the network, therefore the TO shall be freed
- We want to distinguish at least two different cases of TO claim, with possibly <u>different aging times</u>
 - HARD claim \rightarrow a COMMIT was detected during the TO
 - ightarrow a packet **not** preceded or followed by a COMMIT was detected

— SOFT claim

Concept - Aging (2)

- Why HARD and SOFT claims?
 - non-PLCA nodes may send packets (w/o COMMIT) at any time, regardless of PLCA TOs
 - 802.3cg PLCA nodes send packets which are **occasionally** preceded by COMMIT
 - In this proposal (see next slides), D-PLCA nodes always send a COMMIT along with a packet → always do "HARD" TO claims
 - we don't want to have non-PLCA nodes preventing D-PLCA from converging
 - setting a (very) short aging time for SOFT claims makes D-PLCA nodes eventually re-use the IDs that were temporarily claimed by non-PLCA nodes, without growing the PLCA cycle indefinitely (non-PLCA transmissions are unrelated to PLCA TOs !)
 - At the same time, SOFT occupation allows a much faster convergence when mixing D-PLCA and 802.3cg PLCA nodes
- Alternatively, we could have D-PLCA nodes retain the ID when SOFT-stolen, for a while
 - This makes D-PLCA converge better in presence of non-PLCA nodes but worse in presence of 802.3cg nodes
 - Which is better? \rightarrow to be discussed in the group

Detecting HARD and SOFT TO claims

 It is possible to extract this information as well from the existing Clause 148 PLCA Control State Diagram

CANOVATECH The Art of Silicon Sculpting

Forcing COMMITs when D-PLCA is enabled

This require a little (still backward compatible) change to the existing WAIT TO start to timer 802.3cg Clause 148 PLCA Control State Diagram WAIT TO plca_active * (curID = local nodeID) * start to_timer packetPending * (ICRS) extend commit timer = 20 BT EXTEND COMMIT tx cmd <= COMMIT start extend commit timer assuming dplca en = FALSE for 802.3cg nodes plca active * (curID = local nodeID) * packetPending * (!CRS) !dplca en + extend commit timer done COMMIT tx cmd \leftarrow COMMIT committed ⇐ TRUE COMMIT stop to_timer bc <= 0 tx cmd \leftarrow COMMIT TX EN delaying this does the trick! $committed \leftarrow TRUE$ stop to timer bc ⊂ 0 (!TX EN) * (!packetPending)

CAL DV ATECH The Art of Silicon Sculpting

Mixing "cg" and "da" nodes

- What happens when mixing 802.3cg-compatible nodes with D-PLCA capable nodes?
- Case #1: plugging a D-PLCA node to an existing "cg" network (i.e. non D-PLCA capable coordinator)
 - The D-PLCA node eventually works out a unique ID, avoiding the static (SOFT-occupied) TOs of the 802.3cg nodes
 - eventually, the SOFT-occupation will turn into an HARD-occupation as "cg" nodes will send a COMMIT sooner or later
 - In the meantime, there may be collisions which are detected and handled by the MAC as normal
 - There may be no free TOs to take (i.e. the coordinator's plcaNodeCount is equal to the actual number of nodes already)
 - In this case, the D-PLCA node won't be able to achieve enumeration and will keep working in plain CSMA/CD mode creating random collisions.
 - This is what happens already if you plug a non-PLCA node to a PLCA network.
 - If the network load is very low, the D-PLCA node may occasionally steal TOs from non D-PLCA nodes (not a problem...)
- In no case the D-PLCA node can prevent a PLCA or non-PLCA node from transmitting, and vice-versa
- Case #2: plugging a "cg" node to a network having a D-PLCA capable coordinator
 - The coordinator will adapt to the highest ID configured in the "cg" nodes
 - eventually, all D-PLCA nodes will detect the "cg" node presence by receiving packets and COMMITs
 - The "cg" node will never release its ID (statically configured), but the D-PLCA nodes do!
- In short: the "cg" nodes win, the D-PLCA nodes adapt to them

EXAMPLES

Digging out the details - Followers enumeration

- Have D-PLCA enabled nodes always convey a COMMIT at the beginning or at the end of any transmitted packet
- Have each node monitor the PLCA cycle continuously to collect a list of "occupied" TOs
 - Pick a random "free" TO and set localNodeID accordingly
 - do not pick ID zero (reserved for coordinator)
 - do not pick the last available ID (used for increasing the cycle), unless it is the only one free
 - If at any time a node detects a packet/COMMIT within its own TO, it shall relinquish the current ID and pick a new one
 - Mark a TO as "free" if no packets/COMMITs are received within the aging time
 - The node with the highest ID shall dynamically "move" to a lower ID when possible (after the aging time)
- NOTE: collisions are detected as normal and handled by the MAC
 - CSMA/CD random back-offs resolve conflicts
 - even in the (very) unlikely case of undetected collision, there always will be a new stolen TO eventually

Digging out the details - Followers enumeration

- The coordinator node shall also dynamically adapt the plcaNodeCount parameter to the number of nodes detected
 - The plcaNodeCount sets the number of transmit opportunities between two BEACONs
 - Always keep at least one TO free at the end (plcaNodeCount > highest ID detected), increasing plcaNodeCount accordingly
 - Decrease the plcaNodeCount if no node is claiming the TO before last (down to a minimum of 8)

Example: join of nodes

3 nodes (A, B, C) want to join, coordinator already selected, initial plcaNodeCount = 8

2 nodes (A, B) want to join, currently 7 on the network, initial plcaNodeCount = 8

Carnovatech

The Art of Sílícon Sculptíng

Digging out the details - Coordinator selection

- Nodes that are eligible (configured) for getting the coordinator role shall constantly monitor the line for BEACONs
- if no BEACONs are detected within some time, set localNodeID = 0 and take the coordinator role
- if the coordinator detects a BEACON from another node, or it detects a COMMIT issued by another node within TO #0 → relinquish the coordinator role and go for normal enumeration
 - note that this doesn't involve detecting collisions
- Eventually, only one coordinator is selected by statistical convergence
 - Multiple BEACONs on the same mixing-segment temporarily affect performance/fairness but they don't prevent transmissions
- Why detecting only stolen TOs that include a COMMIT?
 - as said, normal CSMA/CD nodes w/o PLCA may transmit at any time, including during the coordinator's TO
 - we don't want such nodes to kick the current coordinator out of its role
 - non PLCA nodes cannot send COMMITs by definition, therefore we can use this information to ignore TOs stolen this way

Example: election of coordinator (localNodeID = 0)

3 nodes (A, B, C) eligible to take the coordinator role, plcaNodeCount = 8 (default)

Ex 1: simple case, node A sends the BEACON first, nodes B and C "hear" it and renounce

	_				-		
АВ	С	0	1	 7	C/0	0	

Ex 2: BEACONs from A and B collide, then A and B hear the BEACON from C and both renounce.

Ex. 3: worst case, BEACONs from A, B, C collide repeatedly then nodes B and C detect the COMMIT from A and renounce. If the packet from A collided, then **the MAC** would re-transmit after the usual random back-off

NOTE that during this time nodes can still send/receive data in plain CSMA/CD mode

CAMOVATECH The Art of Silicon Sculpting

IEEE 802.3da

BEACON

COLLISION

COMMIT

SILENCE

DATA

CONCLUSIONS

- A method (D-PLCA) for dynamically assign PLCA IDs within the physical layer was presented
 - complies with the current definition of PLCA in 802.3cg
 - meets the goals and requirements discussed in the group
 - allows seamless interoperability with 802.3cg nodes and non-PLCA nodes
- Work to be done
 - Define the aging criteria, evaluating the trade-offs
 - decide whether to tune performance towards interop with 802.3cg nodes or co-existence with non-PLCA nodes
 - Translate this into new state diagram(s) in Clause 148

THANK YOU

