IEEE 802.3da – Transmitter model Piergiorgio Beruto

IEEE 802.3 - Public Information

Outline

- Follow-up on Mixing Segment definition and Consensus Model
 - <u>https://www.ieee802.org/3/da/public/040622/diminico_SPMD_01_0422.pdf</u> (Chris DiMinico et al.)
 - <u>https://www.ieee802.org/3/da/public/030922/Paul_01_da_03092022.pdf</u> (Michael Paul)
- The PSD mask definition in Clause 147.5.4.4 allows a wide range of transmitters that produce a variety of eye diagrams
 - The channel models presented so far implicitly assume a "typical" transmitter PSD
 - What about the "worst" case?
- This presentation shows transmitter models that (almost) match the PSD mask limits and droop specifications
 - Proposal for adopting the TX model into the consensus model
 - <u>https://github.com/SPE-MD/SPMD-Simulations</u>

Modeling the TX

Model description

- Python script to read LT-Spice data and calculate the PSD / eye diagram
- Change the TX transfer function to get as close as possible to the defined limits
- Many transfer functions are "unreasonable" to implement, but everything that meets the PSD mask is allowed (in principle)

T1S DRV TYP

Ð

DE

Testbench

DIN DOUT BIT DIN DOUT DME D + DP R1 BIT_CK CLK DME_CK CLK TX_EN DE DN N RST X1 DN N N N N PULSE(0 1 10n 1n 1n 10n 0 1) .tran 1m DP R2 C1 L1 PULSE(0 1 10n 1n 1n 10n 0 1) .tran 1m DME_CK TX_EN PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 10n 1n 1n 10m 0 1)	· · · · · · · · · · · · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · ·	T1S 9	CRAMBLI	ER	DM	E-ENC	· · · · · · · · ·	· · · · · · · ·	T1S DI	RV MIN	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	LC	DAD
BIT_CK CLK DME_CK CLK RST TX_EN DEN X1 DN NDI RSTN PULSE(0 1 10n 1n 1n 10n 0 1) BIT_CK V1N PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 10n 1n 1n 10m 0 1)	· · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · ·	DIN	DOUT	BIT	DI	N DOUT	DM	E · · · · · ·	D	· · + · · · · · · · · · · · · · · · · ·	DP	· · · · · · · · · ·	DP	
RST RST RST X1 DN RST V2 PULSE(0 1 10n 1n 1n 10n 0 1) BIT_CK V1 V1 V1 V1 PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 40n 80n 200000)	 	· · · · ·	· · · · ·	· · · · ·		ІТ_СК	CLK	· · · · · · · ·	DME_	CK CL	K	TX_	EN			DN	· · · · · · · · · · ·	· · · · · ·	50
RST MDI V2 DP R2 C1 L1 PULSE(0 1 10n 1n 1n 10n 0 1) .tran 1m .tran 1m DN TX_EN BIT_CK DME_CK TX_EN V1 V4 V3 PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 10n 1n 1n 10m 0 1)	· · · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · · · · · · · · · · · · · · · ·	RST	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	RS	· · · · · · · · · · · · · · · · · · ·		· · · · · · · ·	X1	· · · · · · · · ·	· · · · · · · · · · ·	· · · · · · · · · · ·	DN	
V2 V2 PULSE(0 1 10n 1n 1n 10n 0 1) V2 BIT_CK DME_CK V1 V4 V1 V4 PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 0 1n 1n 10m 0 1)	· · · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · ·	RS	T · · · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · ·	· · · · · ·
PULSE(0 1 10n 1n 1n 10n 0 1) BIT_CK V1 PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 0 1n 1n 10m 0 1)	· · · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·		V2		· · · · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · · ·	· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	M	DI
POLSE(0 1 0 1n 1n 10n 0 1) BIT_CK V1 V1 PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 10n 1n 1n 10m 0 1)	DIIIC	E/0 1	10n 1	n 1n 1	0n 0 1			· · · · · · · · ·			.tı	an 1m	· · · · · · · ·	· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		R2	C1	<u>_</u> L1
BIT_CK DME_CK TX_EN V1 V4 V3 PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 10n 1n 1n 10m 0 1)	FULS	, , , , , , , , , , , , , , , , , , , ,					· · · · · · · ·		· · · · · · · · · · · · ·	· · · · · · · · · ·		· · · · · · · · ·	· · · · · · · ·	· · · · · · · ·	 	DN	10K	15 p)80µ
DINCK DINCK V1 V4 PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 0 1n 1n 10m 0 1)	· · · · · · · · ·	· · · · ·	· · · · ·	· · · · ·	· · · · · ·	· · · · ·	PIT	CK		· · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	DME CK	· · · · · · · ·	· · · · · · · ·	· · · · · · · ·	· · · · · · · · ·	ту		· · · · · ·
PULSE(0 1 0 1n 1n 40n 80n 200000) PULSE(0 1 0 1n 1n 20n 40n 400000) PULSE(0 1 10n 1n 1n 10m 0 1)	 	· · · · ·	· · · · ·	· · · · ·	· · · · · ·		V1		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · ·	V4	DHE_CK	· · · · · · · ·	· · · · · · · ·	 	· · · · · · · · · · · · · · · · · · ·	V3		· · · · · ·
	PULSE(0	1 0 1r	n 1n 4()n 80n	2000	DO)) Pl	JLSE(01) 1n 1n 20r	n 40n 4000		· · · · · · · · ·	PULSE((0 1 10n	1n 1n 1()m 0 1)		· · · · · ·	· · · · · ·

i.e., differential output voltage on $Z = 50\Omega$

PSD is calculated from V(DP)-V(DN)

Typical 802.3cg transmitter model

Onsemi

"Worst" 802.3cg transmitter model allowed by PSD mask

Onsem

Well, not really... The droop spec implicitly constrains LFs

Figure 147–17—Transmitter output droop

 Using the droop pattern (3.2 µs square wave) there's basically no signal to measure!

• Target droop in 802.3cg is 30% max

"Worst" 802.3cg transmitter model that honors droop spec

Onsem

droop is now within the limits

Figure 147–17—Transmitter output droop

This model meets the 802.3cg droop specifications

Eye diagram is still much worse than the typical case
 a lot more ISI!

Conclusions

- The current PSD mask definition allows for transmitter implementations that produce very different eye diagrams
 - This should be considered when modeling / validating the mixing-segment
- Both the droop specification and the PSD specification contribute to the eye opening
 - Could we just extend the PSD limits in the lower frequencies to compensate for the droop?
 - Problem: we lack the required sensitivity. A small change in the PSD may significantly affect the droop
 - it is easier to keep the droop specs although...
 - Measuring the droop could be difficult/imprecise in practice, therefore it would be beneficial to avoid it
 - Changing the PSD pattern (which is low limited by the DME) could be an option
 - » more work is needed
- The transmitter models and tests are implemented in LTSpice / Python
 - Could be included in the SPE-MD simulations available on github
 - Some help would be appreciated

Onsemi

Intelligent Technology. Better Future.

Follow Us @onsemi

www.onsemi.com