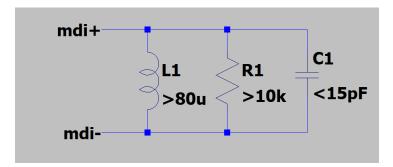
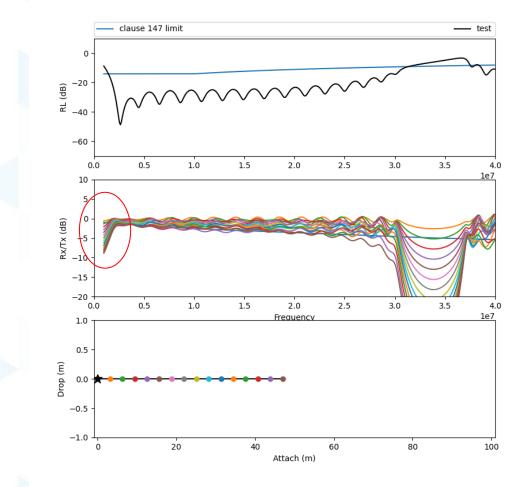
Power Coupling Networks

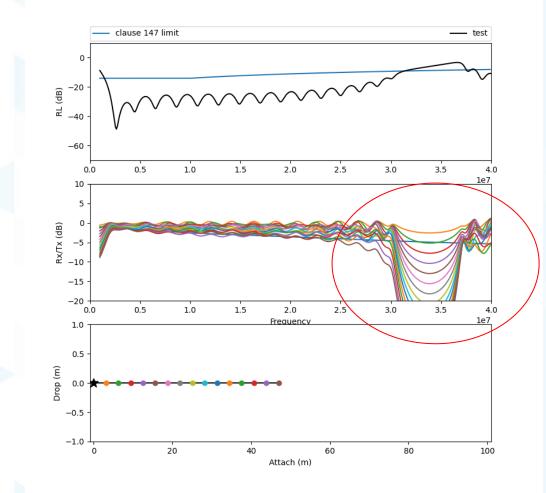
Michael Paul




AHEAD OF WHAT'S POSSIBLE™

Power Coupling Inductance

- ▶ Most models have been using 80uH LPODL
- ► LPodl causes
 - Droop in the data eyes
 - Notch in IL / RL at low frequency
- Lower LPODL is better for Power Path



Cnode

- ► Far bigger problem is Cnode
- Drop Length acts like Cnode
- Difficult / Impossible to reduce
- ▶ Need 25pF-30pF allowance for practical PDs
 - Clause 146/147 PHYs will not be usable 802.3da

Power Coupling Network Cnode Measurement

- Presented previously
 - Paul_da_031721.pdf
- Measurement of an example power coupling network
 - No PHY in measurement
 - Power Coupling Inductance Alone
 - 112uH +/- 20%
 - Measured Cnode = 4.02pF
 - Power Coupling Inductance + Common Mode Choke
 - 100uH CMC
 - Measured Cnode = 13.47pF
 - Estimate 12.5pF per node for PHY
 - Estimation from "Koczwara_Griffiths_Brandt_MultidropNodeDistributionChallenges_20201202_v1.1.pdf"
 - (Measured + Expected) Cnode = 25.97pF

Conclusion

How do we address mixing segment impedance disruption caused by Cnode?